android 媒体框架之MediaCodec

article/2025/6/21 21:32:47

一、MediaCodec 整体架构与设计思想

MediaCodec 是 Android 底层多媒体框架的核心组件,负责高效处理音视频编解码任务。其架构采用 生产者-消费者模型,通过双缓冲区队列(输入/输出)实现异步数据处理:

  • 输入缓冲区队列:存放待编码/解码的原始数据(如 YUV 视频帧或 PCM 音频)。
  • 输出缓冲区队列:存储处理后的数据(如 H.264 流或解码后的原始帧)。
  • 硬件加速支持:优先调用设备专属编解码器(如高通 DSP),显著降低 CPU 负载。

二、核心组件与关键 API 详解

1. 编解码器实例(MediaCodec)
  • 创建方式
    // 创建解码器(H.264 示例)
    MediaCodec decoder = MediaCodec.createDecoderByType("video/avc");
    // 创建编码器(AAC 音频示例)
    MediaCodec encoder = MediaCodec.createEncoderByType("audio/mp4a-latm");
    
    支持通过 MIME 类型(如 video/avc)或硬件编解码器名称创建。
2. 缓冲区管理
  • 输入缓冲区
    • dequeueInputBuffer(timeoutUs):获取空闲缓冲区索引。
    • getInputBuffer(index):通过索引获取 ByteBuffer 对象填充数据。
    • queueInputBuffer(...):提交数据给编解码器处理。
  • 输出缓冲区
    • dequeueOutputBuffer(BufferInfo, timeoutUs):获取处理完成的缓冲区索引及元数据。
    • getOutputBuffer(index):读取编解码后数据。
    • releaseOutputBuffer(index, render):释放缓冲区(若为视频,render=true 可触发渲染)。
3. 配置与状态控制
  • 配置参数(MediaFormat)
    MediaFormat format = MediaFormat.createVideoFormat("video/avc", width, height);
    format.setInteger(MediaFormat.KEY_BIT_RATE, 5000000);  // 码率
    format.setInteger(MediaFormat.KEY_FRAME_RATE, 30);     // 帧率
    format.setInteger(KEY_COLOR_FORMAT, COLOR_FormatYUV420Flexible); // 颜色空间
    codec.configure(format, surface, null, 0); // surface 用于视频渲染
    
  • 生命周期控制
    • start() → 进入运行状态(Running)。
    • stop() → 回到未初始化状态(Uninitialized)。
    • release() → 释放资源。

三、核心类 MediaCodec.BufferInfo 深度解析

BufferInfo 是描述输出缓冲区元数据的关键类,包含以下字段:

字段类型作用
offsetint有效数据在缓冲区中的起始偏移(字节)。通常为 0,表示从缓冲区头部开始读取。
sizeint有效数据长度(字节)。若为 0 且含 BUFFER_FLAG_END_OF_STREAM,表示流结束。
presentationTimeUslong呈现时间戳(微秒),用于音视频同步(如视频帧的渲染时机)。
flagsint缓冲区标志位(位掩码),关键值包括:
(0) : B or P 帧
- BUFFER_FLAG_KEY_FRAME(1):关键帧(I帧)。
- BUFFER_FLAG_END_OF_STREAM(4):流结束标记(EOS)。
- BUFFER_FLAG_CODEC_CONFIG(2):编解码配置数据(如 SPS/PPS)。

典型使用场景

MediaCodec.BufferInfo bufferInfo = new MediaCodec.BufferInfo();
int outputIndex = codec.dequeueOutputBuffer(bufferInfo, timeoutUs);
if (outputIndex >= 0) {ByteBuffer outputBuffer = codec.getOutputBuffer(outputIndex);byte[] data = new byte[bufferInfo.size];outputBuffer.position(bufferInfo.offset);outputBuffer.get(data, 0, bufferInfo.size);// 关键帧处理if ((bufferInfo.flags & MediaCodec.BUFFER_FLAG_KEY_FRAME) != 0) {saveKeyFrame(data); // 存储关键帧用于错误恢复}codec.releaseOutputBuffer(outputIndex, true);
}

四、工作流程与状态机

请添加图片描述

  • 关键状态
    • Flushed:启动后初始状态,缓冲区为空。
    • Running:持续处理数据(90% 时间处于此状态)。
    • End-of-Stream:输入流结束,等待输出剩余数据。

五、注意

  1. 同步 vs 异步模式

    • 同步模式:简单但易阻塞主线程,适合低复杂度场景。
    • 异步模式:通过 setCallback() 监听事件,高效但需处理线程安全。
  2. 缓冲区复用:避免频繁申请内存,提升性能(尤其高清视频)。

  3. 设备兼容性

    • 使用 MediaCodecList 检查编解码器支持情况。
    • 某些设备对 COLOR_FORMAT 支持有限,需动态适配。
  4. MediaCodec 通过双缓冲区队列状态机控制实现高效编解码,核心在于:
    缓冲区管理:dequeueInputBuffer/queueInputBufferdequeueOutputBuffer/releaseOutputBuffer 的配对使用。

  5. 元数据解析:BufferInfoflagspresentationTimeUs 是同步与错误恢复的关键。

  6. 硬件加速:优先选择设备专属编解码器(如 OMX.qcom. 前缀)以优化性能。


http://www.hkcw.cn/article/dbDjObIXae.shtml

相关文章

浅谈 PAM-2 到 PAM-4 的信令技术演变

通信信令技术演进:从 PAM-2 到 PAM-4 在当今数字化高速发展的时代,数据传输需求呈爆炸式增长,行业对通信带宽的要求愈发严苛。为顺应这一趋势,通信信令技术不断革新,曾经占据主导地位的不归零(NRZ&#xff…

(3)Playwright自动化-3-离线搭建playwright环境

1.简介 如果是在公司局域网办公,或者公司为了安全对网络管控比较严格这种情况下如何搭建环境,我们简单来看看 (第一种情况及解决办法:带要搭建环境的电脑到有网的地方在线安装即可。 (第二种情况及解决办法&#xf…

调用蓝耘Maas平台大模型API打造个人AI助理实战

目录 前言需求分析与环境配置明确需求环境准备选择合适的大模型 蓝耘Mass平台介绍API调用大模型API介绍API 调用流程 可交互AI助理开发总结 前言 大数据时代,个人隐私很难得到保障,如果我们需要借助大模型解决一些私人问题,又不想隐私被泄露…

智联未来:低空产业与AI新纪元-(下)

1. 隐形战场:全球规则制定权争夺战 低空经济的崛起,本质是数字主权的争夺战。当美国FAA将无人机适航认证周期延长至36个月,欧盟推出"天空云图"计划整合全境飞行数据时,中国正以制度创新构建自己的规则体系。 1.1 空域…

关于销售的几点注意事项

一、把客户当朋友聊 做买卖这事儿啊,说白了就是人和人打交道。您要是见着客户就背产品说明书,人家扭头就走。得学会听对方说话,琢磨他到底想要啥。就像您去菜市场买菜,摊主要是光说"这菜新鲜",您可能没感觉…

C++语法系列之右值

前言 本来是想在C11里写这篇文章的,发现东西很多,就单独列一篇文章了, 右值这个概念是在C11中提出来的,以前只有左值和左值引用的概念,C11后提出了右值和右值引用,为什么要提出右值和右值引用?…

day17 常见聚类算法

目录 准备操作 聚类评估指标介绍 1.轮廓系数(Sihouette Score) 2.CH指数(Calinski-Harabasz Index) 3.DB指数(Davies-Bounldin Index) KMeans聚类 算法原理 确定簇数的方法:肘部法 KMeans算法的…

LCS 问题解释

最长公共子序列问题(Longest Common Subsequence),该问题可以表述为,在 A , B A,B A,B 中找出一段子序列 x x x,使得 x x x 既是 A A A 的子序列,又是 B B B 的子序列。 你可以理解为,在两…

Windows最快速打开各项系统设置大全

目录 一、应用背景 二、设置项打开方法 2.1 方法一界面查找(最慢) 2.2 方法二cmd命令(慢) 2.3 方法三快捷键(快) 2.4 方法四搜索栏(快) 2.5 方法五任务栏(最快&am…

OTSU算法原理与Python实现:图像二值化的自动阈值分割

1 引言 图像二值化是计算机视觉中的基础操作,它将灰度图像转换为黑白图像,常用于文档扫描、目标检测等任务。OTSU算法(大津法)是一种自动确定二值化阈值的算法,无需人工干预,通过最大化类间方差来分离前景和…

python:批量创建文件

#需求:在指定路径下批量创建3000#可以先弄个10个文本文件,文件格式为序号——物资类别——用户识别码组成 #1.序号从0001到3000 #2.物资类别包括:水果,烟酒,粮油,肉蛋,蔬菜 #3.用户识别码为9位的…

kafka学习笔记(三、消费者Consumer使用教程——配置参数大全及性能调优)

本章主要介绍kafka consumer的配置参数及性能调优的点,其kafka的从零开始的安装到生产者,消费者的详解介绍、源码及分析及原理解析请到博主kafka专栏 。 1.消费者Consumer配置参数 配置参数默认值含义bootstrap.servers无(必填)…

静态综合实验

题目 1.划分IP地址 因为所有网段基于192.168.1.0/24,所以需要自己进行合理的划分。如图,我已经划分完成。 2.启动 3.给五个路由器进行改名 4.给网关写入IP地址 R1 R2 R3 R4 5.完成网段的声明和环回接口的创建 6.在R1上进行ping,观察是否…

流媒体基础解析:音视频封装格式与传输协议

在视频处理与传输的完整流程中,音视频封装格式和传输协议扮演着至关重要的角色。它们不仅决定了视频文件的存储方式,还影响着视频在网络上的传输效率和播放体验。今天,我们将深入探讨音视频封装格式和传输协议的相关知识。 音视频封装格式 什…

保持本地 Git 项目副本与远程仓库完全同步

核心目标: 保持本地 Git 项目副本与 GitHub 远程仓库完全同步。 关键方法: 定期执行 git pull 命令。 操作步骤: 进入项目目录: 在终端/命令行中,使用 cd 命令切换到你的项目文件夹。执行拉取命令: 运行…

Go语言的context

Golang context 实现原理 本篇文章是基于小徐先生的文章的修改和个人注解,要查看原文可以点击上述的链接查看 目前我这篇文章的go语言版本是1.24.1 context上下文 context被当作第一个参数(官方建议),并且不断的传递下去&…

2025年全国青少年信息素养大赛复赛C++算法创意实践挑战赛真题模拟强化训练(试卷3:共计6题带解析)

2025年全国青少年信息素养大赛复赛C++算法创意实践挑战赛真题模拟强化训练(试卷3:共计6题带解析) 第1题:四位数密码 【题目描述】 情报员使用4位数字来传递信息,同时为了防止信息泄露,需要将数字进行加密。数据加密的规则是: 每个数字都进行如下处理:该数字加上5之后除…

NeRF PyTorch 源码解读 - 体渲染

文章目录 1. 体渲染公式推导1.1. T ( t ) T(t) T(t) 的推导1.2. C ( r ) C(r) C(r) 的推导 2. 体渲染公式离散化3. 代码解读 1. 体渲染公式推导 如下图所示,渲染图像上点 P P P 的颜色值 c c c 是累加射线 O P → \overrightarrow{OP} OP 在近平面和远平面范围…

Sentiment analysis integrating LangGraph and large-scale conceptual models

Sentiment analysis integrating LangGraph and large-scale conceptual models 核心目标: 让电脑更聪明地理解大量用户评论(比如邮件、社交媒体、调查问卷),自动分析出大家是夸还是骂(情感分析)&#xff…

DeepSeek R1-0528:深度思考能力的重大跃升与技术突破全解析

引言 2025年5月28日,DeepSeek再次以其标志性的"深夜发布"方式,悄然推出了R1模型的最新版本——DeepSeek-R1-0528。这次被官方定义为"小版本升级"的更新,实际上带来了令人瞩目的性能提升。新版本不仅在数学、编程与通用逻…