机器学习:欠拟合、过拟合、正则化

article/2025/6/21 19:10:44

本文目录:

  • 一、欠拟合
  • 二、过拟合
  • 三、拟合问题原因及解决办法
  • 四、正则化:尽量减少高次幂特征的影响
    • (一)L1正则化
    • (二)L2正则化
    • (三)L1正则化与L2正则化的对比
  • 五、正好拟合代码(附赠)

一、欠拟合

欠拟合:一个假设 在训练数据上不能获得更好的拟合,并且在测试数据集上也不能很好地拟合数据 ,此时认为这个假设出现了欠拟合的现象。(模型过于简单)

欠拟合代码实现:

例:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error  # 计算均方误差
from sklearn.model_selection import train_test_splitdef dm01_欠拟合():# 1. 准备x, y数据, 增加上噪声.# 用于设置随机数生成器的种子(seed), 种子一样, 每次生成相同序列.np.random.seed(666)# x: 随机数, 范围为 (-3, 3), 100个.x = np.random.uniform(-3, 3, size=100)# loc: 均值, scale: 标准差, normal: 正态分布.y = 0.5 * x ** 2 + x + 2 + np.random.normal(0, 1, size=100)# 2. 实例化 线性回归模型.estimator = LinearRegression()# 3. 训练模型X = x.reshape(-1, 1)estimator.fit(X, y)# 4. 模型预测.y_predict = estimator.predict(X)print("预测值:", y_predict)# 5. 计算均方误差 => 模型评估print(f'均方误差: {mean_squared_error(y, y_predict)}')# 6. 画图plt.scatter(x, y)           # 散点图plt.plot(x, y_predict, color='r')   # 折线图(预测值, 拟合回归线)plt.show()                  # 具体的绘图if __name__ == '__main__':dm01_欠拟合()

运行结果:
在这里插入图片描述

二、过拟合

过拟合:一个假设 在训练数据上能够获得比其他假设更好的拟合, 但是在测试数据集上却不能很好地拟合数据 (体现在准确率下降),此时认为这个假设出现了过拟合的现象。

过拟合代码实现:

例:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error  # 计算均方误差
from sklearn.model_selection import train_test_splitdef dm03_过拟合():# 1. 准备x, y数据, 增加上噪声.# 用于设置随机数生成器的种子(seed), 种子一样, 每次生成相同序列.np.random.seed(666)# x: 随机数, 范围为 (-3, 3), 100个.x = np.random.uniform(-3, 3, size=100)# loc: 均值, scale: 标准差, normal: 正态分布.y = 0.5 * x ** 2 + x + 2 + np.random.normal(0, 1, size=100)# 2. 实例化 线性回归模型.estimator = LinearRegression()# 3. 训练模型X = x.reshape(-1, 1)# hstack() 函数用于将多个数组在行上堆叠起来, 即: 数据增加高次项.X3 = np.hstack([X, X**2, X**3, X**4, X**5, X**6, X**7, X**8, X**9, X**10])estimator.fit(X3, y)# 4. 模型预测.y_predict = estimator.predict(X3)print("预测值:", y_predict)# 5. 计算均方误差 => 模型评估print(f'均方误差: {mean_squared_error(y, y_predict)}')# 6. 画图plt.scatter(x, y)  # 散点图# sort()  该函数直接返回一个排序后的新数组。# numpy.argsort()   该函数返回的是数组值从小到大排序时对应的索引值plt.plot(np.sort(x), y_predict[np.argsort(x)], color='r')  # 折线图(预测值, 拟合回归线)plt.show()  # 具体的绘图if __name__ == '__main__':dm03_过拟合()

运行结果:
在这里插入图片描述

三、拟合问题原因及解决办法

1.欠拟合产生原因: 学习到数据的特征过少。

解决办法:

1)添加其他特征项,有时出现欠拟合是因为特征项不够导致的,可以添加其他特征项来解决。

2)添加多项式特征,模型过于简单时的常用套路,例如将线性模型通过添加二次项或三次项使模型泛化能力更强。

2.过拟合产生原因: 原始特征过多,存在一些嘈杂特征, 模型过于复杂是因为模型尝试去兼顾所有测试样本。

解决办法:

1)重新清洗数据,导致过拟合的一个原因有可能是数据不纯,如果出现了过拟合就需要重新清洗数据。

2)增大数据的训练量,还有一个原因就是我们用于训练的数据量太小导致的,训练数据占总数据的比例过小。

3)正则化

4)减少特征维度。

四、正则化:尽量减少高次幂特征的影响

在这里插入图片描述

(一)L1正则化

LASSO回归: from sklearn.linear_model import Lasso
在这里插入图片描述
代码如下:

from sklearn.linear_model import Lasso  # L1正则
from sklearn.linear_model import Ridge  # 岭回归 L2正则def dm04_模型过拟合_L1正则化():# 1. 准备x, y数据, 增加上噪声.# 用于设置随机数生成器的种子(seed), 种子一样, 每次生成相同序列.np.random.seed(666)# x: 随机数, 范围为 (-3, 3), 100个.x = np.random.uniform(-3, 3, size=100)# loc: 均值, scale: 标准差, normal: 正态分布.y = 0.5 * x ** 2 + x + 2 + np.random.normal(0, 1, size=100)# 2. 实例化L1正则化模型, 做实验: alpha惩罚力度越来越大, k值越来越小.estimator = Lasso(alpha=0.005)# 3. 训练模型X = x.reshape(-1, 1)# hstack() 函数用于将多个数组在行上堆叠起来, 即: 数据增加高次项.X3 = np.hstack([X, X**2, X**3, X**4, X**5, X**6, X**7, X**8, X**9, X**10])estimator.fit(X3, y)print(f'权重: {estimator.coef_}')# 4. 模型预测.y_predict = estimator.predict(X3)print("预测值:", y_predict)# 5. 计算均方误差 => 模型评估print(f'均方误差: {mean_squared_error(y, y_predict)}')# 6. 画图plt.scatter(x, y)  # 散点图# sort()  该函数直接返回一个排序后的新数组。# numpy.argsort()   该函数返回的是数组值从小到大排序时对应的索引值plt.plot(np.sort(x), y_predict[np.argsort(x)], color='r')  # 折线图(预测值, 拟合回归线)plt.show()  # 具体的绘图if __name__ == '__main__':dm04_模型过拟合_L1正则化()

(二)L2正则化

Ridge回归: from sklearn.linear_model import Ridge
在这里插入图片描述
代码如下:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression, Lasso, Ridge
from sklearn.metrics import mean_squared_error  # 计算均方误差
from sklearn.model_selection import train_test_splitdef dm05_模型过拟合_L2正则化():# 1. 准备x, y数据, 增加上噪声.# 用于设置随机数生成器的种子(seed), 种子一样, 每次生成相同序列.np.random.seed(666)# x: 随机数, 范围为 (-3, 3), 100个.x = np.random.uniform(-3, 3, size=100)# loc: 均值, scale: 标准差, normal: 正态分布.y = 0.5 * x ** 2 + x + 2 + np.random.normal(0, 1, size=100)# 2. 实例化L2正则化模型, 做实验: alpha惩罚力度越来越大, k值越来越小.estimator = Ridge(alpha=0.005)# 3. 训练模型X = x.reshape(-1, 1)# hstack() 函数用于将多个数组在行上堆叠起来, 即: 数据增加高次项.X3 = np.hstack([X, X**2, X**3, X**4, X**5, X**6, X**7, X**8, X**9, X**10])estimator.fit(X3, y)print(f'权重: {estimator.coef_}')# 4. 模型预测.y_predict = estimator.predict(X3)print("预测值:", y_predict)# 5. 计算均方误差 => 模型评估print(f'均方误差: {mean_squared_error(y, y_predict)}')# 6. 画图plt.scatter(x, y)  # 散点图# sort()  该函数直接返回一个排序后的新数组。# numpy.argsort()   该函数返回的是数组值从小到大排序时对应的索引值plt.plot(np.sort(x), y_predict[np.argsort(x)], color='r')  # 折线图(预测值, 拟合回归线)plt.show()  # 具体的绘图if __name__ == '__main__':# dm04_模型过拟合_L1正则化()dm05_模型过拟合_L2正则化()

(三)L1正则化与L2正则化的对比

在这里插入图片描述

五、正好拟合代码(附赠)

例:
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as pltdef dm02_模型ok():# 1. 准备x, y数据, 增加上噪声.# 用于设置随机数生成器的种子(seed), 种子一样, 每次生成相同序列.np.random.seed(666)# x: 随机数, 范围为 (-3, 3), 100个.x = np.random.uniform(-3, 3, size=100)# loc: 均值, scale: 标准差, normal: 正态分布.y = 0.5 * x ** 2 + x + 2 + np.random.normal(0, 1, size=100)# 2. 实例化 线性回归模型.estimator = LinearRegression()# 3. 训练模型X = x.reshape(-1, 1)X2 = np.hstack([X, X ** 2])estimator.fit(X2, y)# 4. 模型预测.y_predict = estimator.predict(X2)print("预测值:", y_predict)# 5. 计算均方误差 => 模型评估print(f'均方误差: {mean_squared_error(y, y_predict)}')# 6. 画图plt.scatter(x, y)  # 散点图# sort()  该函数直接返回一个排序后的新数组。# numpy.argsort()   该函数返回的是数组值从小到大排序时对应的索引值plt.plot(np.sort(x), y_predict[np.argsort(x)], color='r')  # 折线图(预测值, 拟合回归线)# plt.plot(x, y_predict)plt.show()  # 具体的绘图

运行结果:
在这里插入图片描述
今天的分享到此结束。


http://www.hkcw.cn/article/ffjbUMMZPG.shtml

相关文章

电路学习(二)之电容

电容的基本功能是通交流隔直流、存储电量,在电路中可以进行滤波、充放电。 1.什么是电容? (1)电容定义:电容器代表了器件存储电荷的能力,通俗来理解是两块不连通的导体与绝缘的中间体组成。当给电容充电时…

第十二节:第二部分:集合框架:Collection集合的遍历方式:迭代器、增强for循环、Lambda、案例

迭代器遍历集合 增强for循环遍历集合 Lambda表达式遍历集合 代码: 代码一:使用迭代器遍历集合 package com.itheima.day18_Collection;import java.util.ArrayList; import java.util.Collection; import java.util.Iterator; // //使用迭代器遍历集合…

任务18:时间序列的模型

任务描述 知识点: 移动平均法指数平滑法ARIMA模型 重 点: 指数平滑法ARIMA模型 内 容: 创建时间序列索引绘制时间序列图形处理时间序列数据建立时间序列模型模型效果评估应用模型预测 任务指导 1. 移动平均法 移动平均法&#xff…

Java研学-MongoDB(一)

一 MongoDB 简介 MongoDB是一种高性能、开源的NoSQL数据库,采用面向文档的存储模型,以BSON(Binary JSON)格式存储数据,具有灵活的数据模型、强大的扩展性和丰富的功能特性,广泛应用于各类现代应用程序的数据…

【LLM相关知识点】 LLM关键技术简单拆解,以及常用应用框架整理(二)

【LLM相关知识点】 LLM关键技术简单拆解,以及常用应用框架整理(二) 文章目录 【LLM相关知识点】 LLM关键技术简单拆解,以及常用应用框架整理(二)一、市场调研:业界智能问答助手的标杆案例1、技术…

自动化立体仓库WCS的设计与实现

导语 大家好,我是社长,老K。专注分享智能制造和智能仓储物流等内容。欢迎大家使用我们的仓储物流技术AI智能体。 新书《智能物流系统构成与技术实践》 新书《智能仓储项目出海-英语手册,必备!》 完整版文件和更多学习资料&#xf…

2025年5月18日蓝桥stema省选拔赛编程题答案解析

题目:水龙头 时间限制:C/C 语言 1000MS;其他语言 3000MS 内存限制:C/C 语言 65536KB;其他语言 589824KB 题目描述: 小明在 0 时刻(初始时刻)将一个空桶放置在漏水的水龙头下。已知桶…

基于开源AI大模型AI智能名片S2B2C商城小程序源码的销售环节数字化实现路径研究

摘要:在数字化浪潮下,企业销售环节的转型升级已成为提升竞争力的核心命题。本文基于清华大学全球产业研究院《中国企业数字化转型研究报告(2020)》提出的“提升销售率与利润率、打通客户数据、强化营销协同、构建全景用户画像、助…

使用 HTML + jsmind 实现在线思维导图

在日常工作和学习中,思维导图是一种非常有效的可视化工具,可以帮助我们梳理思路、规划任务、整理知识结构。本文将带你一步步了解如何使用 HTML 和 jsmind 实现一个基础的在线思维导图应用。 效果演示 项目概述 本项目主要包含以下核心功能&#xff1a…

利用python工具you-get下载网页的视频文件

有时候我们可能在一个网站看到一个视频(比如B站),想下载,但是页面没有下载视频的按钮。这时候,我们可以借助python工具you-get来实现下载功能。下面简要说下步骤 (一)因为使用的是python工具&a…

threejs渲染器和前端UI界面

1. three.js Canvas画布布局 学习本节课之前,可以先回顾下第一章节入门部分的6和12两小节关于threejs Canvas画布布局的讲解。 网页上局部特定尺寸:1.6 第一个3D案例—渲染器(opens new window) 全屏,随窗口变化:1.12 Canvas画布布局和全屏…

嵌入式编译工具链熟悉与游戏移植

在自己的虚拟机Ubuntu系统下,逐步编译 mininim源码(波斯王子重制开源版) 指令流程 sudo apt-get remove liballegro5-dev liballegro-image5-dev \liballegro-audio5-dev liballegro-acodec5-dev liballegro-dialog5-dev sudo apt-get install automak…

IEEE P370:用于高达 50 GHz 互连的夹具设计和数据质量公制标准

大多数高频仪器,如矢量网络分析仪 (VNA) 和时域反射仪 (TDR),都可以在同轴接口的末端进行非常好的测量。然而,复杂系统中使用的互连很少具有同轴接口。用于表征这些设备的夹具的设计和实施会对测…

随机响应噪声-极大似然估计

一、核心原因:噪声机制的数学可逆性 在随机响应机制(Randomized Response)中使用极大似然估计(Maximum Likelihood Estimation, MLE)是为了从扰动后的噪声数据中无偏地还原原始数据的统计特性。随机响应通过已知概率的…

二叉搜索树——红黑树

红黑树 概念红黑树的原理红黑树的效率红黑树的插入规则变色旋转变色红黑树的验证 代码如下 概念 红黑树本质也是一颗二叉搜索树,他的每个结点增加⼀个存储位来表⽰结点的颜⾊,可以是红⾊或者⿊⾊。通过对任何⼀条从根到叶⼦的路径上各个结点的颜⾊进⾏约…

PCB设计教程【强化篇】——USB拓展坞元件选型

前言 本教程基于B站Expert电子实验室的PCB设计教学的整理,为个人学习记录,旨在帮助PCB设计新手入门。所有内容仅作学习交流使用,无任何商业目的。若涉及侵权,请随时联系,将会立即处理 目录 前言 USB 拓展坞项目概述…

C++11新特性lambda的使用详解

得益于C11的发布,提供了提高效率的语法,C11以后是现代C,C98是传统C,这里来介绍lambda的使用和原理。 目录 1.lambda 2.列表捕捉 3,lambda的应用 4,lambda原理 1.lambda lambda表达式本质是一个匿名函…

4000万日订单背后,饿了么再掀即时零售的“效率革命”

当即时零售转向价值深耕,赢面就是综合实力的强弱。 文|郭梦仪 编|王一粟 在硝烟弥漫的外卖行业“三国杀”中,饿了么与淘宝闪购的日订单量竟然突破了4000万单。 而距淘宝闪购正式上线,还不到一个月。 在大额福利优惠…

PostIn入门教程 - 使用IDEA插件快速生成API接口定义

PostIn是一款国产开源免费的接口管理工具,包含项目管理、接口调试、接口文档设计、接口数据MOCK等模块,支持常见的HTTP协议、websocket协议等。IDEA插件支持扫描代码自动生成接口文档并上传到PostIn系统。本文将详细介绍怎么安装IDEA插件,使用…

在RTX5060Ti上进行Qwen3-4B的GRPO强化微调

导语 最近赶上618活动,将家里的RTX 4060显卡升级为了RTX 5060Ti 16GB版本,显存翻了一番,可以进行一些LLM微调实验了,本篇博客记录使用unsloth框架在RTX 5060Ti 16GB显卡上进行Qwen3-4B-Base模型的GRPO强化微调实验。 简介 GPU性…