TDengine 的 AI 应用实战——电力需求预测

article/2025/6/29 13:27:37

作者: derekchen    

Demo数据集准备

我们使用公开的UTSD数据集里面的电力需求数据,作为预测算法的数据来源,基于历史数据预测未来若干小时的电力需求。数据集的采集频次为30分钟,单位与时间戳未提供。为了方便演示,按照频率从2025-01-01 00:00:00开始向前倒推生成时间戳,并存储在TDengine对应的表里。

数据集中包含5个文件,我们使用编号最大的一个子集来完成演示。该数据文件,放置于https://github.com/taosdata/TDgpt-demo仓库的demo_data目录下,请参考下文的步骤导入TDengine以完成演示。数据集的统计信息如下:

基于 TDgpt 时序数据智能体的电力需求预测 - TDengine Database 时序数据库

演示环境准备

环境要求

您可基于Linux、Mac以及Windows操作系统完成Demo系统的运行。但为使用docker-compose,您计算机上需要安装有下属软件:

  1. Git
  2. Docker Engine: v20.10+
  3. Docker Compose: v2.20+

Demo中包含3个docker镜像 (TDengine, TDgpt, Grafana),以及一组用于产生预测/异常检测结果的shell脚本。组件版本的要求如下:

基于 TDgpt 时序数据智能体的电力需求预测 - TDengine Database 时序数据库

克隆Demo仓库到本地

 
  1. git clone https://github.com/taosdata/TDgpt-demo
  2. cd TDgpt-demo
  3. chmod 775 analyse.sh

文件夹下包含docker-compose.yml、tdengine.yml两个yml文件。docker-compose.yml 包含了所有一键启动demo所需的镜像配置信息,其引用tdengine.yml作为Grafana的数据源配置。

TDgpt-demo/demo_data下包含三个csv文件(electricity_demand.csv、wind_power.csv、ec2_failure.csv),以及三个同前缀sql脚本,分别对应电力需求预测、风力发电预测和运维监控异常检测场景。

TDgpt-demo/demo_dashboard下包含了三个json文件(electricity_demand_forecast.json、wind_power_forecast.json、ec2_failure_anomaly.json),分别对应三个场景的看板。

docker-compose.yml中已经定义了TDengine容器的持久化卷:tdengine-data,待容器启动后,使用docker cp命令将demo_data拷贝至容器内使用。

运行和关闭Demo

注意:在运行demo前,请根据您宿主机的架构(CPU类型),编辑docker-compose.yml文件,为TDengine指定对应的platform参数:linux/amd64(Intel/AMD CPU)或linux/arm64(ARM CPU)。TDgpt必须统一使用linux/amd64参数。

进入docker-compose.yml文件所在的目录执行如下命令,启动TDengine、TDgpt和Grafana一体化演示环境:

 
  1. docker-compose up -d

首次运行时,等待10s后请执行如下命令将TDgpt的Anode节点注册到TDengine:

 
  1. docker exec -it tdengine taos -s "create anode 'tdgpt:6090'"

在宿主机执行下列命令,初始化体验测试环境的数据:

 
  1. docker cp analyse.sh tdengine:/var/lib/taos
  2. docker cp demo_data tdengine:/var/lib/taos
  3. docker exec -it tdengine taos -s "source /var/lib/taos/demo_data/init_electricity_demand.sql"

关闭演示环境,请使用:

 
  1. docker-compose down

进行演示

  1. 打开浏览器,输入http://localhost:3000,并用默认的用户名口令 admin/admin 登录Grafana。
  2. 登录成功后,进入路径”Home → Dashboards”页面,并且导入electricity_demand_forecast.json文件。

基于 TDgpt 时序数据智能体的电力需求预测 - TDengine Database 时序数据库

  1. 导入后,选择“electricity_demand”这个面板。面板已经配置好了真实值、TDtsfm_1以及HoltWinters的预测结果。当前只有真实值的数据曲线。

  1. 我们以analyze.sh脚本,来进行预测。首先完成TDtsfm_1算法的演示:
 
  1. docker exec -it tdengine /var/lib/taos/analyse.sh --type forecast --db tdgpt_demo --table electricity_demand --stable single_val --algorithm tdtsfm_1 --params "fc_rows=48,wncheck=0" --start "2024-01-01" --window 30d --step 1d

上述shell脚本,将从指定的起始时间开始(2024-01-01)以前一个月的数据为输入,使用TDtsfm_1算法预测当前下一天的每30mins的电力需求(共计48个数据点),直到达到electricity_demand 表中最后一天的记录,并将结果写入electricity_demand_tdtsfm_1_result 表中。执行新的预测前,脚本会新建/清空对应的结果表。执行过程中将持续在控制台上,按照天为单位推进输出如下的执行结果:

 
  1. taos> INSERT INTO tdgpt_demo.electricity_demand_tdtsfm_1_result SELECT _frowts, forecast(val, 'algorithm=tdtsfm_1,fc_rows=48,wncheck=0')
  2. FROM tdgpt_demo.electricity_deman
  3. WHERE ts >= '2024-01-12 00:00:00' AND ts < '2024-02-11 00:00:00'
  4. Insert OK, 48 row(s) affected (0.238208s)
  1. Grafana的看板上,配置刷新频率为5s,将动态显示预测结果的黄色曲线,直观呈现与实际值的对比。为了展示清晰,请按住command键点击左下角的Real以及TDtsfm_1图例(Mac下,Windows下请使用win键),从而只保留这两条曲线展示。

基于 TDgpt 时序数据智能体的电力需求预测 - TDengine Database 时序数据库

基于 TDgpt 时序数据智能体的电力需求预测 - TDengine Database 时序数据库

基于 TDgpt 时序数据智能体的电力需求预测 - TDengine Database 时序数据库

基于 TDgpt 时序数据智能体的电力需求预测 - TDengine Database 时序数据库

  1. 完成HoltWinters模型的演示:
 
  1. docker exec -it tdengine /var/lib/taos/analyse.sh --type forecast --db tdgpt_demo --table electricity_demand --stable single_val --algorithm holtwinters --params "rows=48,period=48,wncheck=0,trend=add,seasonal=add" --start "2024-01-01" --window 30d --step 1d

与第四步类似,HoltWinters模型将动态输出预测结果并呈现在看板上。从预测结果中可以看到,TDtsfm_1对数据的预测精度显著优于传统的统计学方法HoltWinters。除了预测精度外,HoltWinters算法的最大问题是需要非常精细化的对参数进行调整评估,否则还容易出现下图中这种频繁发生的预测值奇异点。

基于 TDgpt 时序数据智能体的电力需求预测 - TDengine Database 时序数据库

基于鼠标圈选的方式,我们可以查看一段时间内的细粒度预测结果对比:

基于 TDgpt 时序数据智能体的电力需求预测 - TDengine Database 时序数据库

您也可以尝试其他算法或模型,来找到最合适自己场景的算法和模型。

Demo脚本使用详解

脚本概述 

analyse.sh脚本用于在 TDengine 数据库上执行时间序列预测和异常检测分析,支持滑动窗口算法处理。主要功能包括:

  • 时间序列预测 :使用 HoltWinters 等算法进行未来值预测 。
  • 异常检测 :使用 k-Sigma 等算法识别数据异常点 。
  • 自动窗口滑动 :支持自定义窗口大小和步长进行连续分析。

参数说明

基于 TDgpt 时序数据智能体的电力需求预测 - TDengine Database 时序数据库

TDengine推荐使用超级表来进行数据建模。因此,Demo中建立了一个名为 single_val 的超级表,包含ts (timestamp类型) 和val (float类型),以及标签定义scene (varchar (64) )。现阶段TDgpt只支持单列值输入输出,因此这个超级表可以作为所有源数据表和结果表的结构定义。子表的表名与tag名称保持一致即可。

db参数指定了源数据表和结果表隶属的数据库。结果表将以【源表名称】_【算法名称】_【result】格式存储。Grafana里面通过查询结果表实现分析结果和原始数据的对比。

一般情况下,对于非必填项,用户在demo过程中只需要设置–start参数以节省运行时间。对于必填项,请参考示例值进行设置。

时间格式说明 

step和window参数指定的滑动步长和分析窗口大小需符合如下参数约定:

基于 TDgpt 时序数据智能体的电力需求预测 - TDengine Database 时序数据库

脚本执行流程

  1. graph TDgpt_Demo
  2. A[开始] --> B[参数解析与验证]
  3. B --> C{是否指定start?}
  4. C -->|否| D[查询最小时间戳]
  5. C -->|是| E[转换时间格式]
  6. D --> E
  7. E --> F[计算时间窗口]
  8. F --> G[生成结果表]
  9. G --> H{是否到达数据终点?}
  10. H -->|否| I[生成并执行SQL]
  11. I --> H
  12. H -->|是| J[输出完成信息]

使用更多的数据

参考「运行和关闭Demo」章节里electricity_demand.sql脚本的内容,确保按照规定格式将数据准备为csv格式(逗号分隔,值需要用英文双引号括起来),即可将数据导入TDengine。然后,请使用「进行演示」章节中的方法来生成预测结果,并调整Grafana中的看板以实现和实际数据的对比。

结论

在本文中,我们展示了使用TDgpt来进行电力需求预测的完整流程。从中可以看到,基于TDgpt 来构建时序数据分析,能够以SQL方式实现与应用的便捷集成,还可以用Grafana 进行展示,大大降低开发和应用时序数据预测和异常检测的成本。

从预测效果来看,基于transformer架构的预训练模型TDtsfm_1在使用的数据集上展示出显著优于Holtwinters模型的效果。在不同的实际场景下,用户需要针对数据特点,针对模型算法进行选择和参数调优,也可以选择不同的算法或模型进行尝试。

TDengine 的企业版中,TDgpt 将为用户提供更多的选择:

  1. 模型选择器。模型选择器可以自动根据用户的历史数据集,对购买的所有模型进行准确性评估。用户可选择最适合自己场景的模型或算法进行部署和应用。
  2. TDtsfm_1自研模型的重训练及微调。TDtsfm_1基于海量时序数据进行了预训练,在大部分场景下相比于传统的机器学习和统计预测模型都会有显著的准确率优势。如果用户对于模型预测准确度有更高的要求,可以申请购买 TDgpt 企业版的预训练服务。使用用户的场景历史数据进行预训练,在特定场景下的预测效果可能更佳。
  3. 第三方解决方案。涛思数据联合国内外时序分析/异常检测专业厂家、研究机构,为用户提供专业的分析解决方案,包括落地过程中的实施服务等。

关于背景

电力需求预测作为现代能源管理的核心工具,其核心价值贯穿电力系统的全生命周期。在资源配置层面,通过精准预判用电趋势,可优化发电设施布局与电网升级节奏,避免超前投资造成的资源闲置或滞后建设引发的供应缺口,典型场景中可使基础设施投资效率提升15%-20%。对于电力运营商而言,负荷预测支撑着从燃料采购到机组调度的动态优化,在火力发电领域已实现吨煤发电量2%以上的能效提升,同时通过削峰填谷降低电网备用容量需求,显著压缩系统运行成本。 

在能源安全维度,预测技术构建起电力供需的缓冲机制。短期预测误差每降低1个百分点,对应减少的紧急调峰成本可达区域电网日均运营费用的3%-5%,这在应对极端天气或突发事件时尤为关键。而中长期预测则为跨区域电力互济、储能设施配置提供决策基线,有效缓解结构性缺电风险。市场环境中,预测能力直接转化为经济收益,发电企业通过日前96时段负荷预测优化报价策略,在电力现货市场中可额外获取10%-18%的价格套利空间,工商用户则借助负荷特性分析制定用能方案,实现年度电费支出5%-10%的降幅。

本文提供基于 docker-compose 快速部署 TDgp 体验测试环境的指引,并基于这个环境和真实的数据,展示日前预测电力需求的全过程,便于大家快速掌握 TDgpt,迅速让自己拥有AI驱动的时序数据预测与异常检测的能力。

关于TDgpt

TDgpt 是 TDengine 内置的时序数据分析智能体,它基于 TDengine 的时序数据查询功能,通过 SQL 提供运行时可动态扩展和切换的时序数据高级分析的能力,包括时序数据预测和时序数据异常检测。通过预置的时序大模型、大语言模型、机器学习、传统的算法,TDgpt 能帮助工程师在10分钟内完成时序预测与异常检测模型的上线,降低至少80%的时序分析模型研发和维护成本。

截止到3.3.6.0版本,TDgpt 提供Arima、HoltWinters、LSTM、MLP 以及基于Transformer架构自研的TDtsfm (TDengine time series foundation model) v1版和其他时序模型,以及k-Sigma、Interquartile range(IQR)、Grubbs、SHESD、Local Outlier Factor(LOF)、Autoencoder这六种异常检测模型。用户可以根据TDgpt开发指南自行接入自研或其他开源的时序模型或算法。


http://www.hkcw.cn/article/AwSVXeXjvK.shtml

相关文章

【03】完整开发腾讯云播放器SDK的UniApp官方UTS插件——优雅草上架插件市场-卓伊凡

【03】完整开发腾讯云播放器SDK的UniApp官方UTS插件——优雅草上架插件市场-卓伊凡 一、项目背景与转型原因 1.1 原定计划的变更 本系列教程最初规划是开发即构美颜SDK的UTS插件&#xff0c;但由于甲方公司内部战略调整&#xff0c;原项目被迫中止。考虑到&#xff1a; 技术…

(aaai2024) Omni-Kernel Network for Image Restoration

代码&#xff1a;https://github.com/c-yn/OKNet 研究动机&#xff1a;作者认为Transformer模型计算复杂度太高&#xff0c;因此提出了 omni-kernel module &#xff08;OKM&#xff09;&#xff0c;可以有效的学习局部到全局的特征表示。该模块包括&#xff1a;全局、大分支、…

useMemo useCallback 自定义hook

useMemo & useCallback & 自定义hook useMemo 仅当依赖项发生变化的时候&#xff0c;才去重新计算&#xff1b;其他状态变化时则不去做不必要的计算。 useCallback 缓存函数。但是使用注意&#x1f4e2; &#xff0c;useCallback没有特别明显的优化。 *合适的场景——父…

android binder(二)应用层编程实例

一、binder驱动浅析 从上图看出&#xff0c;binder的通讯主要涉及三个步骤。 在 Binder Server 端定义好服务&#xff0c;然后向 ServiceManager 注册服务在 Binder Client 中向 ServiceManager 获取到服务发起远程调用&#xff0c;调用 Binder Server 中定义好的服务 整个流…

GESP2024年3月认证C++二级( 第三部分编程题(2)小杨的日字矩阵)

参考程序&#xff1a; #include <iostream> using namespace std;int main() {int n;cin >> n; // 读入奇数 n// 外层循环控制每一行for (int i 0; i < n; i) {// 内层循环控制每一列for (int j 0; j < n; j) {char ch;// 如果当前列是最左或最右&#x…

BUUCTF[ACTF2020 新生赛]Exec 1题解

BUUCTF[ACTF2020 新生赛]Exec 1题解 分析解题过程总结: 分析 先分析题目&#xff1a;exc()是一个内部调用shell命令的函数&#xff0c;同样的函数还有system(), 创建靶机&#xff0c;打开网址&#xff0c;是一个和PING相关的网页&#xff0c;查看源代码&#xff0c;没有提示&a…

NX869NX874美光固态颗粒NX877NX883

NX869NX874美光固态颗粒NX877NX883 美光固态硬盘颗粒技术解析与市场展望 近年来&#xff0c;固态硬盘&#xff08;SSD&#xff09;市场呈现出蓬勃发展的态势&#xff0c;而作为核心组件的存储颗粒&#xff0c;其技术进展与市场动态自然吸引了众多关注。在众多品牌中&#xff…

CodeTop100 Day20

58、翻转字符串中的数字 class Solution {public String reverseWords(String s) {s s.trim(); int j s.length() - 1, i j;StringBuilder res new StringBuilder();while (i > 0) {while (i > 0 && s.charAt(i) ! ) i--…

重温经典算法——快速排序

版权声明 本文原创作者&#xff1a;谷哥的小弟作者博客地址&#xff1a;http://blog.csdn.net/lfdfhl 基本原理 快速排序基于分治思想&#xff0c;通过选取基准元素将数组划分为两个子数组&#xff08;小于基准和大于基准&#xff09;&#xff0c;递归排序子数组。平均时间复…

【机器学习】集成学习与梯度提升决策树

目录 一、引言 二、自举聚合与随机森林 三、集成学习器 四、提升算法 五、Python代码实现集成学习与梯度提升决策树的实验 六、总结 一、引言 在机器学习的广阔领域中,集成学习(Ensemble Learning)犹如一座闪耀的明星,它通过组合多个基本学习器的力量,创造出…

Python量化交易:K线形态识别与技术分析可视化

引言 在量化交易领域&#xff0c;K线形态识别是一种重要的技术分析方法&#xff0c;可以帮助投资者预测市场趋势并制定交易策略。本文将介绍如何使用Python实现K线形态的自动识别与可视化分析&#xff0c;无需依赖复杂的第三方库如TA-Lib&#xff0c;完全使用纯Python实现。通…

前端自动化测试利器:Playwright 全面介绍

目录 &#x1f9ea; 前端自动化测试利器&#xff1a;Playwright 全面介绍 ✨ 为什么选择 Playwright&#xff1f; 1. 跨浏览器支持 2. 多语言支持 3. 自动等待机制 4. 强大的页面交互能力 &#x1f527; Playwright 快速上手 &#x1f4f8; 更强的调试体验 &#x1f9…

华为云Flexus+DeepSeek征文|华为云 Dify 打造智慧水果分析助手,实现“知识库 + 大模型”精准赋能

前言 本文聚焦基于华为云平台部署的智慧水果分析助手 AI Agent&#xff0c;通过 Dify 平台集成 Embedding、Rerank 及 DeepSeek 模型&#xff0c;构建工作流&#xff0c;实现提问内容驱动的 “知识库 大模型” 与 “联网搜索 大模型” 智能切换。 ECS控制台&#xff1a;https…

【算法设计与分析】实验——改写二分搜索算法,众数问题(算法分析:主要算法思路),有重复元素的排列问题,整数因子分解问题(算法实现:过程,分析,小结)

说明&#xff1a;博主是大学生&#xff0c;有一门课是算法设计与分析&#xff0c;这是博主记录课程实验报告的内容&#xff0c;题目是老师给的&#xff0c;其他内容和代码均为原创&#xff0c;可以参考学习&#xff0c;转载和搬运需评论吱声并注明出处哦。 要求&#xff1a;2.…

MCP协议学习

MCP协议出现的背景 MCP&#xff08;Model Context Protocol&#xff0c;模型上下文协议&#xff09;由Anthropic公司于2024年11月推出&#xff0c;旨在解决大语言模型&#xff08;LLM&#xff09;与外部数据源、工具和服务之间的标准化交互问题。例如某金融科技公司需开发一款…

【笔记】Windows 部署 Suna 开源项目完整流程记录

#工作记录 因篇幅有限&#xff0c;所有涉及处理步骤的详细处理办法请参考文末资料。 Microsoft Windows [Version 10.0.27868.1000] (c) Microsoft Corporation. All rights reserved.(suna-py3.12) F:\PythonProjects\suna>python setup.py --admin███████╗██╗…

SQL Views(视图)

目录 Views Declaring Views Example: View Definition Example: Accessing a View Advantages of Views Triggers on Views Interpreting a View Insertion&#xff08;视图插入操作的解释&#xff09; The Trigger Views A view is a relation defined in terms of…

MySQL指令个人笔记

MySQL学习&#xff0c;SQL语言笔记 一、MySQL 1.1 启动、停止 启动 net start mysql83停止 net stop mysql831.2 连接、断开 连接 mysql -h localhost -P 3306 -u root -p断开 exit或者ctrlc 二、DDL 2.1 库管理 2.1.1 直接创建库 使用默认字符集和排序方式&#xf…

【redis实战篇】第七天

摘要&#xff1a; 本文介绍了黑马点评中点赞、关注和推送功能的实现方案。点赞功能采用Redis的ZSET结构存储用户点赞数据&#xff0c;实现点赞状态查询、热门博客排行和点赞用户展示。关注功能通过关系表和Redis集合实现用户关注关系管理&#xff0c;包含共同关注查询。推送功能…

[yolov11改进系列]基于yolov11引入特征融合注意网络FFA-Net的python源码+训练源码

【FFA-Net介绍】 北大和北航联合提出的FFA-net: Feature Fusion Attention Network for Single Image Dehazing图像增强去雾网络&#xff0c;该网络的主要思想是利用特征融合注意力网络&#xff08;Feature Fusion Attention Network&#xff09;直接恢复无雾图像&#xff0c;…