Python_day40

article/2025/7/18 10:01:06

昨天我们介绍了图像数据的格式以及模型定义的过程,发现和之前结构化数据的略有不同,主要差异体现在2处

1. 模型定义的时候需要展平图像

2. 由于数据过大,需要将数据集进行分批次处理,这往往涉及到了dataset和dataloader来规范代码的组织

现在我们把注意力放在训练和测试代码的规范写法上

# 1. 数据预处理
transform = transforms.Compose([transforms.ToTensor(),  # 转换为张量并归一化到[0,1]transforms.Normalize((0.1307,), (0.3081,))  # MNIST数据集的均值和标准差
])# 2. 加载MNIST数据集
train_dataset = datasets.MNIST(root='./data',train=True,download=True,transform=transform
)test_dataset = datasets.MNIST(root='./data',train=False,transform=transform
)# 3. 创建数据加载器
batch_size = 64  # 每批处理64个样本
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 定义模型、损失函数和优化器
class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.flatten = nn.Flatten()  # 将28x28的图像展平为784维向量self.layer1 = nn.Linear(784, 128)  # 第一层:784个输入,128个神经元self.relu = nn.ReLU()  # 激活函数self.layer2 = nn.Linear(128, 10)  # 第二层:128个输入,10个输出(对应10个数字类别)def forward(self, x):x = self.flatten(x)  # 展平图像x = self.layer1(x)   # 第一层线性变换x = self.relu(x)     # 应用ReLU激活函数x = self.layer2(x)   # 第二层线性变换,输出logitsreturn x# 初始化模型
model = MLP()
model = model.to(device)  # 将模型移至GPU(如果可用)# from torchsummary import summary  # 导入torchsummary库
# print("\n模型结构信息:")
# summary(model, input_size=(1, 28, 28))  # 输入尺寸为MNIST图像尺寸criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数,适用于多分类问题
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器

 单通道图片的规范写法

# 先继续之前的代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader , Dataset # DataLoader 是 PyTorch 中用于加载数据的工具
from torchvision import datasets, transforms # torchvision 是一个用于计算机视觉的库,datasets 和 transforms 是其中的模块
import matplotlib.pyplot as plt
import warnings
# 忽略警告信息
warnings.filterwarnings("ignore")
# 设置随机种子,确保结果可复现
torch.manual_seed(42)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")
# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):model.train()  # 设置为训练模式# 新增:记录每个 iteration 的损失all_iter_losses = []  # 存储所有 batch 的损失iter_indices = []     # 存储 iteration 序号(从1开始)for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):# enumerate() 是 Python 内置函数,用于遍历可迭代对象(如列表、元组)并同时获取索引和值。# batch_idx:当前批次的索引(从 0 开始)# (data, target):当前批次的样本数据和对应的标签,是一个元组,这是因为dataloader内置的getitem方法返回的是一个元组,包含数据和标签。# 只需要记住这种固定写法即可data, target = data.to(device), target.to(device)  # 移至GPU(如果可用)optimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数# 记录当前 iteration 的损失(注意:这里直接使用单 batch 损失,而非累加平均)iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)  # iteration 序号从1开始# 统计准确率和损失running_loss += loss.item() #将loss转化为标量值并且累加到running_loss中,计算总损失_, predicted = output.max(1) # output:是模型的输出(logits),形状为 [batch_size, 10](MNIST 有 10 个类别)# 获取预测结果,max(1) 返回每行(即每个样本)的最大值和对应的索引,这里我们只需要索引total += target.size(0) # target.size(0) 返回当前批次的样本数量,即 batch_size,累加所有批次的样本数,最终等于训练集的总样本数correct += predicted.eq(target).sum().item() # 返回一个布尔张量,表示预测是否正确,sum() 计算正确预测的数量,item() 将结果转换为 Python 数字# 每100个批次打印一次训练信息(可选:同时打印单 batch 损失)if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 测试、打印 epoch 结果epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totalepoch_test_loss, epoch_test_acc = test(model, test_loader, criterion, device)print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)# 保留原 epoch 级曲线(可选)# plot_metrics(train_losses, test_losses, train_accuracies, test_accuracies, epochs)return epoch_test_acc  # 返回最终测试准确率

之前我们用mlp训练鸢尾花数据集的时候并没有用函数的形式来封装训练和测试过程,这样写会让代码更加具有逻辑-----隔离参数和内容。

1. 后续直接修改参数就行,不需要去找到对应操作的代码

2. 方便复用,未来有多模型对比时,就可以复用这个函数

这里我们先不写早停策略,因为规范的早停策略需要用到验证集,一般还需要划分测试集

1. 划分数据集:训练集(用于训练)、验证集(用于早停和调参)、测试集(用于最终报告性能)。

2. 在训练过程中,使用验证集触发早停。

3. 训练结束后,仅用测试集运行一次测试函数,得到最终准确率。

测试函数和绘图函数均被封装在了train函数中,但是test和绘图函数在定义train函数之后,这是因为在 Python 中,函数定义的顺序不影响调用,只要在调用前已经完成定义即可。

# 6. 测试模型(不变)

# 6. 测试模型(不变)
def test(model, test_loader, criterion, device):model.eval()  # 设置为评估模式test_loss = 0correct = 0total = 0with torch.no_grad():  # 不计算梯度,节省内存和计算资源for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()avg_loss = test_loss / len(test_loader)accuracy = 100. * correct / totalreturn avg_loss, accuracy  # 返回损失和准确率

如果打印每一个bitchsize的损失和准确率,会看的更加清晰,更加直观

# 7. 绘制每个 iteration 的损失曲线

# 7. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()

# 8. 执行训练和测试(设置 epochs=2 验证效果)

# 8. 执行训练和测试(设置 epochs=2 验证效果)
epochs = 2  
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

在PyTorch中处理张量(Tensor)时,以下是关于展平(Flatten)、维度调整(如view/reshape)等操作的关键点,这些操作通常不会影响第一个维度(即批量维度`batch_size`):

处理张量

图像任务中的张量形状

输入张量的形状通常为:  

`(batch_size, channels, height, width)`  

例如:`(batch_size, 3, 28, 28)`  

其中,`batch_size` 代表一次输入的样本数量。

NLP任务中的张量形状

输入张量的形状可能为:  

`(batch_size, sequence_length)`  

此时,`batch_size` 同样是第一个维度。


 

 1. **Flatten操作**

- **功能**:将张量展平为一维数组,但保留批量维度。

- **示例**:  

  - **输入形状**:`(batch_size, 3, 28, 28)`(图像数据)  

  - **Flatten后形状**:`(batch_size, 3×28×28)` = `(batch_size, 2352)`  

  - **说明**:第一个维度`batch_size`不变,后面的所有维度被展平为一个维度。


 

 2. **view/reshape操作**

- **功能**:调整张量维度,但必须显式保留或指定批量维度。

- **示例**:  

  - **输入形状**:`(batch_size, 3, 28, 28)`  

  - **调整为**:`(batch_size, -1)`  

  - **结果**:展平为两个维度,保留`batch_size`,第二个维度自动计算为`3×28×28=2352`。


 

总结

- **批量维度不变性**:无论进行flatten、view还是reshape操作,第一个维度`batch_size`通常保持不变。

- **动态维度指定**:使用`-1`让PyTorch自动计算该维度的大小,但需确保其他维度的指定合理,避免形状不匹配错误。

彩色图片的规范写法

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 1. 数据预处理
transform = transforms.Compose([transforms.ToTensor(),                # 转换为张量transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 标准化处理
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=transform
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=transform
)# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 定义MLP模型(适应CIFAR-10的输入尺寸)
class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.flatten = nn.Flatten()  # 将3x32x32的图像展平为3072维向量self.layer1 = nn.Linear(3072, 512)  # 第一层:3072个输入,512个神经元self.relu1 = nn.ReLU()self.dropout1 = nn.Dropout(0.2)  # 添加Dropout防止过拟合self.layer2 = nn.Linear(512, 256)  # 第二层:512个输入,256个神经元self.relu2 = nn.ReLU()self.dropout2 = nn.Dropout(0.2)self.layer3 = nn.Linear(256, 10)  # 输出层:10个类别def forward(self, x):# 第一步:将输入图像展平为一维向量x = self.flatten(x)  # 输入尺寸: [batch_size, 3, 32, 32] → [batch_size, 3072]# 第一层全连接 + 激活 + Dropoutx = self.layer1(x)   # 线性变换: [batch_size, 3072] → [batch_size, 512]x = self.relu1(x)    # 应用ReLU激活函数x = self.dropout1(x) # 训练时随机丢弃部分神经元输出# 第二层全连接 + 激活 + Dropoutx = self.layer2(x)   # 线性变换: [batch_size, 512] → [batch_size, 256]x = self.relu2(x)    # 应用ReLU激活函数x = self.dropout2(x) # 训练时随机丢弃部分神经元输出# 第三层(输出层)全连接x = self.layer3(x)   # 线性变换: [batch_size, 256] → [batch_size, 10]return x  # 返回未经过Softmax的logits# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 初始化模型
model = MLP()
model = model.to(device)  # 将模型移至GPU(如果可用)criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):model.train()  # 设置为训练模式# 记录每个 iteration 的损失all_iter_losses = []  # 存储所有 batch 的损失iter_indices = []     # 存储 iteration 序号for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)  # 移至GPUoptimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数# 记录当前 iteration 的损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计准确率和损失running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 每100个批次打印一次训练信息if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 计算当前epoch的平均训练损失和准确率epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / total# 测试阶段model.eval()  # 设置为评估模式test_loss = 0correct_test = 0total_test = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testprint(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)return epoch_test_acc  # 返回最终测试准确率# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 7. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# # 保存模型
# torch.save(model.state_dict(), 'cifar10_mlp_model.pth')
# # print("模型已保存为: cifar10_mlp_model.pth")

由于深度mlp的参数过多,为了避免过拟合在这里引入了dropout这个操作,他可以在训练阶段随机丢弃一些神经元,避免过拟合情况。dropout的取值也是超参数。

在测试阶段,由于开启了eval模式,会自动关闭dropout。

可以继续调用这个函数来复用

# 7. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

此时你会发现MLP(多层感知机)在图像任务上表现较差(即使增加深度和轮次也只能达到 50-55% 准确率),主要原因与图像数据的空间特性和MLP 的结构缺陷密切相关。

1. MLP 的每一层都是全连接层,输入图像会被展平为一维向量(如 CIFAR-10 的 32x32x3 图像展平为 3072 维向量)。图像中相邻像素通常具有强相关性(如边缘、纹理),但 MLP 将所有像素视为独立特征,无法利用局部空间结构。例如,识别 “汽车轮胎” 需要邻近像素的组合信息,而 MLP 需通过大量参数单独学习每个像素的关联,效率极低。

2. 深层 MLP 的参数规模呈指数级增长,容易过拟合

所以我们接下来将会学习CNN架构,CNN架构的参数规模相对较小,且训练速度更快,而且CNN架构可以解决图像识别问题,而MLP不能。

知识点回顾:

  1. 彩色和灰度图片测试和训练的规范写法:封装在函数中
  2. 展平操作:除第一个维度batchsize外全部展平
  3. dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout

作业

仔细学习下测试和训练代码的逻辑,这是基础,这个代码框架后续会一直沿用,后续的重点慢慢就是转向模型定义阶段了。

@浙大疏锦行


http://www.hkcw.cn/article/tYuEOKKINf.shtml

相关文章

MSTNet:用于糖尿病视网膜病变分类的多尺度空间感知 Transformer 与多实例学习方法|文献速递-深度学习医疗AI最新文献

Title 题目 MSTNet: Multi-scale spatial-aware transformer with multi-instance learning for diabetic retinopathy classification MSTNet:用于糖尿病视网膜病变分类的多尺度空间感知 Transformer 与多实例学习方法 01 文献速递介绍 糖尿病视网膜病变&#…

Linux上安装MongoDB

目录 一、在Linux系统安装MongoDB服务器 1、下载MongoDB 2、上传MongoDB并解压 3、创建必要目录 4、配置环境变量 5、创建配置文件 6、启动命令 7、验证安装 二、在Linux系统安装MongoDB客户端Shell 1、下载MongoDB Shell 2、上传MongoDB Shell并解压 3、配置环境变…

muduo库的初步认识和基本使用,创建一个简单查询单词服务系统

小编在学习完muduo库之后,觉得对于初学者,muduo库还是有点不好理解,所以在此,小编来告诉大家muduo库的初步认识和基本使用,让初学者也可以更快的上手和使用muduo库。 Muduo由陈硕大佬开发,是⼀个基于 非阻塞…

格恩朗超声波水表 助力农业精准灌溉与振兴​

在农业现代化的征程中,水资源的精准利用至关重要,而这离不开高精度计量设备的支持。大连格恩朗品牌积极响应国家全面推进乡村振兴、加快农业农村现代化的号召,精心打造的超声波水表,凭借其超高精度,成为绿色灌溉领域的…

Nginx进阶篇(静态资源的缓存处理、Nginx中与浏览器缓存相关的指令、Nginx的跨域问题、静态资源防盗链)

文章目录 1. 静态资源的缓存处理1.1 什么是缓存1.2 什么是Web缓存1.3 Web缓存的种类1.3.1 客户端缓存1.3.2 服务端缓存 1.4 为什么要用浏览器缓存1.5 浏览器缓存的执行流程1.6 浏览器强缓存和弱缓存的区别1.6.1 强缓存(Strong Cache)1.6.2 弱缓存&#x…

云游戏混合架构

云游戏混合架构通过整合本地计算资源与云端能力,形成了灵活且高性能的技术体系,其核心架构及技术特征可概括如下: 一、混合架构的典型模式 分层混合模式‌ 前端应用部署于公有云(如渲染流化服务),后端逻辑…

Origin教程010:Origin绘制同心圆图

文章目录 10、绘制同心圆弧图1、同心圆弧图绘制2、调整绘图顺序3、设置标签内容、样式4、指引线设置5、添加图形标题6、练习数据10、绘制同心圆弧图 本节要点: 同心圆弧图的绘制调整绘图顺序(对象管理器)设置标签内容、样式指引线设置添加图形标题1、同心圆弧图绘制 1️⃣拖…

rs485/232转profinet网关与长陆-UNI800称重显示控制仪通讯

rs485/232转profinet网关与长陆-UNI800称重显示控制仪通讯 在现代工业自动化系统中,RS485转Profinet网关作为一种关键的通信接口设备,其重要性不言而喻。它能够将传统的RS485接口设备接入先进的Profinet网络,实现不同协议之间的无缝转换和数…

【速通RAG实战:进阶】20、改进RAG检索质量有哪些诀窍?

一、数据层优化:构建高质量检索基础 (一)动态语义分块技术 传统固定长度分块易切断完整语义,采用基于相似度的动态分块策略可显著提升上下文连贯性。通过LangChain的SemanticChunker实现语义边界检测,当相邻文本相似度低于0.4时自动切分,避免将“设备型号-参数-操作步骤…

Nginx网站服务:从入门到LNMP架构实战

🏡作者主页:点击! Nginx-从零开始的服务器之旅专栏:点击! 🐧Linux高级管理防护和群集专栏:点击! ⏰️创作时间:2025年5月30日14点22分 前言 说起Web服务器&#xff0c…

早发现=早安心!超导心磁图如何捕捉早期病变信号?

随着生活节奏的加快,心血管疾病已成为威胁人们健康的“隐形杀手”。据国家心血管病中心发布的《中国心血管健康与疾病报告2022》显示,我国心血管病现患者人数已高达3.3亿,每5例死亡中就有2例死于心血管病。这一数据触目惊心,提醒我…

AI感知与行动:考拉悠然发布空间智能世界模型,让AI走进物理世界

本文转自:《封面新闻》 5月,2025福布斯中国人工智能科技企业TOP50评选结果发布,成都考拉悠然科技有限公司成功入选,成为榜单中唯一专注“空间智能”的企业。 ,时长02:55 而在近日,考拉悠然发布了面向空间…

Arduino学习-跑马灯

1、效果 2、代码 /**** 2025-5-30 跑马灯的小程序 */ //时间间隔 int intervaltime200; //初始化函数 void setup() {// put your setup code here, to run once://设置第3-第7个引脚为输出模式for(int i3;i<8;i){pinMode(i,OUTPUT);} }//循环执行 void loop() {// put you…

CAD多边形密堆积2D插件

插件介绍 CAD多边形密堆积2D插件可在AutoCAD内建立模拟重力堆积状态的随机多边形颗粒及界面过渡区&#xff08;ITZ&#xff09;模型。 模型可分为多边形颗粒、界面过渡区&#xff08;ITZ&#xff09;、长方形试件三部分&#xff0c;各部分在CAD内分图层绘制&#xff0c;可批…

特伦斯 S75:重塑钢琴体验的数码钢琴之选

当传统钢琴的典雅质感与现代科技的精准赋能相遇&#xff0c;特伦斯 S75 立式数码钢琴应运而生。这款专为追求品质的演奏者与音乐爱好者设计的高端乐器&#xff0c;以 “还原三角钢琴灵魂&#xff0c;革新数字钢琴体验” 为核心理念&#xff0c;在音色、触感、音质与智能交互间达…

methods的实现原理

一、直观的感受methods的使用 首先直观的感受methods方法的使用&#xff0c;同样以计数器为例&#xff0c; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widt…

晨控CK-FR03与TwinCAT3配置EtherCAT通讯连接手册

晨控CK-FR03与TwinCAT3配置EtherCAT通讯连接手册 晨控CK-FR03系列作为晨控智能工业级别RFID读写器,支持大部分工业协议如RS232、RS485、以太网。支持工业协议Modbus RTU、Modbus TCP、Profinet、EtherNet/lP、EtherCat以及自由协议TCP/IP等。 本期主题&#xff1a;围绕CK-FR03…

大模型-attention汇总解析之-MLA

一、核心思想 先看下初始的MLA的一般性公式&#xff1a; 我们一般会缓存的是投影后的k_i, v_i而不是投影前的x_i, c_i &#xff0c;根据 MLA 的这个做法&#xff0c;通过不同的投影矩阵再次让所有的 K、V Head 都变得各不相同&#xff0c;那么 KV Cache 的大小就恢复成跟 MHA …

多线程(3)

1volatile关键字: 1.1volatile的功能 volatile关键字能够保证内存可见性 当变量被volatile修饰后: 写操作--->会将寄存器内的值修改后会第一时间将新值写回内存(主内存),不会引起一个另外一个线程去读的时候还读个旧数据,导致出现bug,比如将01改为1后就应该立马写回内存…

WIN11+VSCODE搭建c/c++开发环境

搭建c/cby win11vscode 前面试过了ubuntuvscode,macosvscode,win11visual studio搭建&#xff0c;本来以为win11vscode是手到擒来的&#xff0c;没想到颇有些周折。可能解决方案也并不完美&#xff0c;先记录下来&#xff0c;以后有改进再来修改。 安装vscode https://code.v…