小白的进阶之路系列之十二----人工智能从初步到精通pytorch综合运用的讲解第五部分

article/2025/6/10 15:12:44

在本笔记本中,我们将针对Fashion-MNIST数据集训练LeNet-5的变体。Fashion-MNIST是一组描绘各种服装的图像瓦片,有十个类别标签表明所描绘的服装类型。

# PyTorch model and training necessities
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim# Image datasets and image manipulation
import torchvision
import torchvision.transforms as transforms# Image display
import matplotlib.pyplot as plt
import numpy as np# PyTorch TensorBoard support
from torch.utils.tensorboard import SummaryWriter# In case you are using an environment that has TensorFlow installed,
# such as Google Colab, uncomment the following code to avoid
# a bug with saving embeddings to your TensorBoard directory# import tensorflow as tf
# import tensorboard as tb
# tf.io.gfile = tb.compat.tensorflow_stub.io.gfile

在TensorBoard中显示图像

让我们首先将数据集中的样本图像添加到TensorBoard:

# Helper function for inline image display
def matplotlib_imshow(img, one_channel=False):if one_channel:img = img.mean(dim=0)img = img / 2 + 0.5     # unnormalizenpimg = img.numpy()if one_channel:plt.imshow(npimg, cmap="Greys")else:plt.imshow(np.transpose(npimg, (1, 2, 0)))if __name__ == '__main__':transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))])# Store separate training and validations splits in ./datatraining_set = torchvision.datasets.FashionMNIST('./data',download=True,train=True,transform=transform)validation_set = torchvision.datasets.FashionMNIST('./data',download=True,train=False,transform=transform)training_loader = torch.utils.data.DataLoader(training_set,batch_size=4,shuffle=True,num_workers=2)validation_loader = torch.utils.data.DataLoader(validation_set,batch_size=4,shuffle=False,num_workers=2)# Class labelsclasses = ('T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat','Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle Boot')# Extract a batch of 4 imagesdataiter = iter(training_loader)images, labels = next(dataiter)# Create a grid from the images and show themimg_grid = torchvision.utils.make_grid(images)matplotlib_imshow(img_grid, one_channel=True)plt.show()

输出为:

在这里插入图片描述

上面,我们使用TorchVision和Matplotlib创建了一个小批量输入数据的视觉网格。下面,我们在SummaryWriter上使用add_image()调用来记录TensorBoard使用的图像,并且我们还调用flush())来确保它立即写入磁盘。

    # Default log_dir argument is "runs" - but it's good to be specific# torch.utils.tensorboard.SummaryWriter is imported abovewriter = SummaryWriter('runs/fashion_mnist_experiment_1')# Write image data to TensorBoard log dirwriter.add_image('Four Fashion-MNIST Images', img_grid)writer.flush()# To view, start TensorBoard on the command line with:#   tensorboard --logdir=runs# ...and open a browser tab to http://localhost:6006/

如果您在命令行启动TensorBoard并在新的浏览器选项卡中打开它(通常在localhost:6006),您应该在IMAGES选项卡下看到图像网格。

绘制标量以可视化训练

TensorBoard对于跟踪您的训练进度和效果非常有用。下面,我们将运行一个训练循环,跟踪一些指标,并保存数据供TensorBoard使用。

让我们定义一个模型来对图像块进行分类,以及一个用于训练的优化器和损失函数:

    class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(1, 6, 5)self.pool = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(6, 16, 5)self.fc1 = nn.Linear(16 * 4 * 4, 120)self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)def forward(self, x):x = self.pool(F.relu(self.conv1(x)))x = self.pool(F.relu(sel

http://www.hkcw.cn/article/TRxcXqHFXL.shtml

相关文章

pytorch3d+pytorch1.10+MinkowskiEngine安装

1、配置pytorch1.10cuda11.0 pip install torch1.10.1cu111 torchvision0.11.2cu111 torchaudio0.10.1 -f https://download.pytorch.org/whl/cu111/torch_stable.html 2、配置 MinkowskiEngine库 不按下面步骤,出现错误 1、下载MinkowskiEngine0.5.4到本地 2、查看…

ORACLE 缺失 OracleDBConsoleorcl服务导致https://xxx:port/em 不能访问

这个原因是,操作过一下 ORCL的服务配置变更导致的。 再PATH中添加个环境变量,路径如下 管理员权限运行cmd 等待创建完成 大概3分钟 查看服务 点击第一个访问,下图登录后的截图

分布式流处理与消息传递——向量时钟 (Vector Clocks) 算法详解

Java 实现向量时钟 (Vector Clocks) 算法详解 一、向量时钟核心原理 #mermaid-svg-JcZ1GT0r1ZNSy6W7 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-JcZ1GT0r1ZNSy6W7 .error-icon{fill:#552222;}#mermaid-svg-JcZ…

深入浅出:Oracle 数据库 SQL 执行计划查看详解(1)——基础概念与查看方式

背景 在当今的软件开发领域,尽管主流开发模式往往倾向于采用单表模式,力图尽可能地减少表之间的连接操作,以期达到提高数据处理效率、简化应用逻辑等目的。然而,对于那些已经上线运行多年的运维老系统而言,它们内部往…

多模态大语言模型arxiv论文略读(104)

Talk Less, Interact Better: Evaluating In-context Conversational Adaptation in Multimodal LLMs ➡️ 论文标题:Talk Less, Interact Better: Evaluating In-context Conversational Adaptation in Multimodal LLMs ➡️ 论文作者:Yilun Hua, Yoav…

【Oracle】游标

个人主页:Guiat 归属专栏:Oracle 文章目录 1. 游标基础概述1.1 游标的概念与作用1.2 游标的生命周期1.3 游标的分类 2. 显式游标2.1 显式游标的基本语法2.1.1 声明游标2.1.2 带参数的游标 2.2 游标的基本操作2.2.1 完整的游标操作示例 2.3 游标属性2.3.1…

Ethernet/IP转DeviceNet网关:驱动大型矿山自动化升级的核心纽带

在大型矿山自动化系统中,如何高效整合新老设备、打通数据孤岛、实现统一控制,是提升效率与安全的关键挑战。JH-EIP-DVN疆鸿智能EtherNet/IP转DeviceNet网关,正是解决这一难题的核心桥梁,为矿山各环节注入强劲连接力: …

Nginx + Tomcat 负载均衡、动静分离群集

一、 nginx 简介 Nginx 是一款轻量级的高性能 Web 服务器、反向代理服务器及电子邮件(IMAP/POP3)代理服务器,在 BSD-like 协议下发行。其特点是占有内存少,并发能力强,在同类型的网页服务器中表现优异,常用…

5.Nginx+Tomcat负载均衡群集

Tomcat服务器应用场景:tomcat服务器是一个免费的开放源代码的Web应用服务器,属于轻量级应用服务器,在中小型系统和并发访问用户不是很多的场合下被普遍使用,是开发和调试JSP程序的首选。一般来说,Tomcat虽然和Apache或…

【算法设计与分析】实验——汽车加油问题, 删数问题(算法实现:代码,测试用例,结果分析,算法思路分析,总结)

说明:博主是大学生,有一门课是算法设计与分析,这是博主记录课程实验报告的内容,题目是老师给的,其他内容和代码均为原创,可以参考学习,转载和搬运需评论吱声并注明出处哦。 4-1算法实现题 汽车…

网络爬虫 - App爬虫及代理的使用(十一)

App爬虫及代理的使用 一、App抓包1. App爬虫原理2. reqable的安装与配置1. reqable安装教程2. reqable的配置3. 模拟器的安装与配置1. 夜神模拟器的安装2. 夜神模拟器的配置4. 内联调试及注意事项1. 软件启动顺序2. 开启抓包功能3. reqable面板功能4. 夜神模拟器设置项5. 注意事…

SQLite详细解读

一、SQLite 是什么? SQLite 是一个嵌入式关系型数据库管理系统(RDBMS)。它不是像 MySQL 或 PostgreSQL 那样的客户端-服务器数据库引擎,而是一个自包含的、无服务器的、零配置的、事务性的 SQL 数据库引擎。 核心特点 嵌入式/库…

线程池详细解析(三)

本章我们来讲一讲线程池的最后一个方法shutdown,这个方法的主要作用就是将线程池进行关闭 shutdown: public void shutdown() {ReentrantLock var1 this.mainLock;var1.lock();try {this.checkShutdownAccess();this.advanceRunState(0);this.interrup…

口碑对比:杭州白塔岭画室和燕壹画室哪个好?

从口碑方面来看,杭州燕壹画室和白塔岭画室各有特点,以下是具体分析: 燕壹画室 教学成果突出: 其前身燕壹设计工作室在2019 - 2023年专注美院校考设计,有一定的教学积淀,2023年转型后第一年攻联考就斩获浙…

车载雷达:超声波雷达、毫米波雷达、激光雷达相关技术场景介绍和技术比较

随着技术发展,如今的汽车智能化程度越来越高,配备的传感器也越来越多,特别是与辅助驾驶相关的汽车雷达,它们如同汽车的 “眼睛”,帮助车辆感知周围环境。为了适配不同的使用场景和功能需求,汽车雷达也分为很多类型,并且各具特点。 一、技术特点 一)超声波雷达 超声波…

Spring AI Advisor机制

Spring AI Advisors 是 Spring AI 框架中用于拦截和增强 AI 交互的核心组件,其设计灵感类似于 WebFilter,通过链式调用实现对请求和响应的处理5。以下是关键特性与实现细节: 核心功能 ‌1. 请求/响应拦截‌ 通过 AroundAdvisor 接口动态修…

GPTBots在AI大语言模型应用中敏感数据匿名化探索和实践

背景 随着人工智能技术的快速发展,尤其是大语言模型(LLM-large language model)在金融、医疗、客服等领域的广泛应用,处理海量数据已成为常态。然而,这些数据中往往包含个人可识别信息(PII-Personally Ide…

使用 C++/OpenCV 制作跳动的爱心动画

使用 C/OpenCV 制作跳动的爱心动画 本文将引导你如何使用 C 和 OpenCV 库创建一个简单但有趣的跳动爱心动画。我们将通过绘制参数方程定义的爱心形状,并利用正弦函数来模拟心跳的缩放效果。 目录 简介先决条件核心概念 参数方程绘制爱心动画循环模拟心跳效果 代码…

入门AJAX——XMLHttpRequest(Get)

一、什么是 AJAX AJAX Asynchronous JavaScript And XML(异步的 JavaScript 和 XML)。 1、XML与异步JS XML: 是一种比较老的前后端数据传输格式(已经几乎被 JSON 代替)。它的格式与HTML类似,通过严格的闭合自定义标…

MDP的observations部分

文章目录 1.isaaclab的observations1.1 根状态相关观测base_pos_zbase_lin_vel (use)base_ang_vel (use)projected_gravity (use)root_pos_wroot_quat_wroot_lin_vel_wroot_ang_vel_w 1.2 关节状态相关观测joint_posjoint_pos_rel…