深度学习与特征交叉:揭秘FNN与SNN在点击率预测中的应用

article/2025/6/15 6:02:03

今天,给大家分享一篇关于基于深度神经网络(DNNs)的特征交叉方法——FNN(Factorization-machine supported Neural Network)和SNN(Sampling-based Neural Network)的研究。随着广告点击率预估等领域对海量多维稀疏离散特征的需求不断增长,如何高效地捕捉特征之间的高阶交互关系成为提升模型性能的关键。本文通过结合因子分解机(FM)与深度神经网络的优势,提出了两种创新的架构和预训练策略,既解决了高维稀疏特征的计算复杂度问题,又显著提升了CTR预测的准确度。

接下来,我将深入对这篇论文展开全面解读。和以往一样,我会严格依照论文的结构框架,从研究背景、核心论点、实验设计到最终结论,逐一对文章的各个关键部分进行细致剖析 ,力求为大家呈现这篇时间序列预测论文的全貌,挖掘其中的研究价值与创新点。

1. Abstract

预测用户响应,如点击率和转化率,在许多网页应用中至关重要,包括网页搜索、个性化推荐和在线广告。与通常在图像和音频领域中看到的连续原始特征不同,网络空间中的输入特征始终是多字段的,并且大多数是离散和类别型的,而它们之间的依赖关系却鲜为人知。主要的用户响应预测模型要么局限于线性模型,要么需要手动构建高阶组合特征。前者失去了探索特征交互的能力,而后者在庞大的特征空间中带来了沉重的计算负担。为了解决这个问题,本文提出了两个使用深度神经网络(DNNs)的新颖模型,用于自动学习类别特征之间的有效模式,并预测用户的广告点击行为。为了使本文 DNNs 高效运行,提出利用三种特征转换方法,即因子分解机(FMs)、受限玻尔兹曼机(RBMs)和去噪自编码器(DAEs)。本文介绍了提出模型的结构及其高效的训练算法。通过真实世界数据的大规模实验表明,本文的方法优于主流的最先进模型。

2. Introduction

用户响应(例如点击率或转化率)预测在许多网页应用中扮演着关键角色,包括网页搜索、推荐系统、赞助搜索和展示广告。例如,在在线广告中,相较于传统的线下广告,能够针对个人用户进行定向是其主要优势。所有这些定向技术本质上都依赖于系统预测特定用户是否会认为某个潜在广告“相关”的功能,即预测在特定上下文中用户点击某个广告的概率。赞助搜索、上下文广告以及近年来兴起的实时竞价(RTB)展示广告都高度依赖于学习模型预测广告点击率(CTR)的能力。目前应用的CTR估计模型大多是线性的,涵盖从逻辑回归和朴素贝叶斯到FTRL逻辑回归和贝叶斯概率回归,这些模型都是基于大量使用独热编码的一维稀疏特征。线性模型具有实现简单、学习高效的优势,但由于无法学习非平凡模式以捕捉假定的(条件)独立原始特征之间的交互,因此性能相对较低。另一方面,非线性模型能够利用不同的特征组合,从而可能提升估计性能。例如,因子分解机(FMs)将用户和物品的二值特征映射到一个低维连续空间,并通过向量内积自动探索特征交互。

 完整文章链接:深度学习与特征交叉:揭秘FNN与SNN在点击率预测中的应用


http://www.hkcw.cn/article/RCCiAJVOXQ.shtml

相关文章

Win11系统不推送24H2/西数SSD无法安装24H2 - 解决方案

Win11系统不推送24H2/西数SSD无法安装24H2 - 解决方案 前言获取24H2推送西数SSD安装24H2更新SSD固件规避设备检查修改注册表(可选) 前言 Win11 24H2系统优化了底层架构,加快了系统响应速度,并在25年5月份开始推送,但很…

Elasticsearch集群最大分片数设置详解:从问题到解决方案

目录 前言 1 问题背景:重启后设置失效 2 核心概念解析 2.1 什么是分片(Shard)? 2.2 cluster.max_shards_per_node的作用 2.3 默认值是多少? 3 参数设置的两种方式 3.2 持久性设置(persistent) 3.2 临时设置(transient) 4 问题解决方…

机器学习:集成学习概念、分类、随机森林

本文目录: 一、集成学习概念**核心思想:** 二、集成学习分类(一)Bagging集成(二)Boosting集成(三)两种集成方法对比 三、随机森林 一、集成学习概念 集成学习是一种通过结合多个基学习器&#…

Python基于SVM技术的手写数字识别问题项目实战

说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在当今数字化转型加速的时代,手写数字识别作为图像处理与机器学习领域的一个经典问题,具有广…

MySQL 全量、增量备份与恢复

一.MySQL 数据库备份概述 备份的主要目的是灾难恢复,备份还可以测试应用、回滚数据修改、查询历史数据、审计等。之前已经学习过如何安装 MySQL,本小节将从生产运维的角度了解备份恢复的分类与方法。 1 数据备份的重要性 在企业中数据的价值至关…

Python Pytest

1.Pytest用例发现规则 1.1 模块名(python文件)名必须以 test_ 开头或 _test 结尾,如 test_case,case_test,下划线都不能少 1.2 模块不能放在 . 开头的隐藏目录或者叫 venv的目录下,virtual environment,叫venv1都可以…

[Linux] MySQL源码编译安装

目录 环境包安装 创建程序用户 解压源码包 配置cmake ​编辑编译 安装 配置修改属性 属主和属组替换成mysql用户管理 系统环境变量配置 初始化数据库 服务管理 启动 环境包安装 yum -y install ncurses ncurses-devel bison cmake gcc gcc-c 重点强调:采…

RK3568-移植codesys-runtime

PC下载安装CODESYS Development System V3.5.17.0 https://store.codesys.com/en/codesys.html#product.attributes.wrapperPC下载安装 CODESYS Control for Linux ARM64 SL 4.1.0.0.package https://store.codesys.com/en/codesys-control-for-linux-arm-sl-1.html 注意&…

安装和配置 Nginx 和 Mysql —— 一步一步配置 Ubuntu Server 的 NodeJS 服务器详细实录6

前言 昨天更新了四篇博客,我们顺利的 安装了 ubuntu server 服务器,并且配置好了 ssh 免密登录服务器,安装好了 服务器常用软件安装, 配置好了 zsh 和 vim 以及 通过 NVM 安装好Nodejs,还有PNPM包管理工具 。 作为服务器的运行…

nav2笔记-250603

合作背景: AMD与Open Navigation在过去几个月里进行了合作,旨在向ROS 2社区展示AMD强大的Ryzen AI、Embedded和Kria能力。 演示内容: 帖子提到,他们已经开始展示如何使用Ryzen AI为自主机器人产品提供动力,在各种现实世…

黑马Java面试笔记之 消息中间件篇(RabbitMQ)

一. 消息丢失问题 RabbitMQ如何保证消息不丢失? 使用场景有: 异步发送(验证码、短信、邮件... )MYSQL和Redis,ES之间的数据同步分布式事务削峰填谷...... 消息丢失原因会有三种情况,分别分析一下 1.1 生…

如何使用插件和子主题添加WordPress自定义CSS(附:常见错误)

您是否曾经想更改网站外观的某些方面,但不知道怎么做?有一个解决方案——您可以将自定义 CSS(层叠样式表)添加到您的WordPress网站! 在本文中,我们将讨论您需要了解的有关CSS的所有知识以及如何使用它来修…

NLP学习路线图(二十):FastText

在自然语言处理(NLP)领域,词向量(Word Embedding)是基石般的存在。它将离散的符号——词语——转化为连续的、富含语义信息的向量表示,使得计算机能够“理解”语言。而在众多词向量模型中,FastT…

小巧实用,Windows文件夹着色软件推荐

软件介绍 本文介绍一款能实现Windows系统文件夹颜色分类的软件。 软件特点 这款软件免费且开源,体积仅1.35MB,小巧轻便,适合喜欢小工具的用户。 软件安装 安装过程十分便捷,打开软件后点击“install”即可完成安装。 基本操作…

解决Vditor加载Markdown网页很慢的问题(Vite+JS+Vditor)

1. 引言 在上一篇文章《使用Vditor将Markdown文档渲染成网页(ViteJSVditor)》中,详细介绍了通过Vditor将Markdown格式文档渲染成Web网页的过程,并且实现了图片格式居中以及图片源更换的功能。不过,笔者发现在加载这个渲染Markdown网页的时候…

leetcode hot100刷题日记——36.最长连续序列

解答&#xff1a; 实际上在哈希表中存储不重复的数字。 然后遍历哈希表&#xff0c;找间隔&#xff0c;更新最大间隔。 class Solution { public:int longestConsecutive(vector<int>& nums) {unordered_set<int>hash;for(int num:nums){hash.insert(num);}in…

Unity Mac 笔记本操作入门

在 macOS 笔记本电脑上使用 Unity Editor 的场景视图 (Scene View) 旋转视角&#xff0c;主要依赖于触摸板手势和键盘修饰键的组合。由于没有物理中键&#xff0c;操作方式会与 Windows 鼠标略有不同。 以下是具体的旋转视角操作&#xff1a; 1. 基本旋转视角 (Orbit) 这是最…

【笔记】使用Media Creation Tool给新主机装win10魔改iso

前提&#xff1a; win10的iso是魔改的 已经下载好在旧电脑 在这里随便挑一个符合你要求的Win10系统下载_Win10专业版_windows10正式版下载 - 系统之家 下载好win10版本的媒体创建工具https://www.microsoft.com/zh-cn/software-download/windows10 制作装机U盘 插入U盘 管理…

深圳南柯电子|储能EMC整改:如何节省70%整改费用的实战方法

在新能源产业蓬勃发展的当下&#xff0c;储能系统作为电网调峰、可再生能源消纳的核心载体&#xff0c;其电磁兼容性&#xff08;EMC&#xff09;问题日益成为制约行业发展的技术瓶颈。EMC&#xff08;Electromagnetic Compatibility&#xff09;即电磁兼容性&#xff0c;指设备…

R1-Searcher++新突破!强化学习如何赋能大模型动态知识获取?

R1-Searcher新突破&#xff01;强化学习如何赋能大模型动态知识获取&#xff1f; 大语言模型&#xff08;LLM&#xff09;虽强大却易因静态知识产生幻觉&#xff0c;检索增强生成&#xff08;RAG&#xff09;技术成破局关键。本文将解读R1-Searcher框架&#xff0c;看其如何通…