Python训练营打卡Day39

article/2025/8/24 20:39:05

DAY 39 图像数据与显存

知识点回顾
1.图像数据的格式:灰度和彩色数据
2.模型的定义
3.显存占用的4种地方
a.模型参数+梯度参数
b.优化器参数
c.数据批量所占显存
d.神经元输出中间状态
4.batchisize和训练的关系

作业:今日代码较少,理解内容即可
@浙大疏锦行


DAY 39

一、 图像数据的介绍

1.1 灰度图像

从这里开始进入到了图像数据相关的部分,默认有计算机视觉相关的知识。

昨天我们介绍了minist这个经典的手写数据集,作为图像数据,相较于结构化数据(表格数据)他的特点在于他每个样本的的形状并不是(特征数,),而是(宽,高,通道数)

# 先继续之前的代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader , Dataset # DataLoader 是 PyTorch 中用于加载数据的工具
from torchvision import datasets, transforms # torchvision 是一个用于计算机视觉的库,datasets 和 transforms 是其中的模块
import matplotlib.pyplot as plt
# 设置随机种子,确保结果可复现
torch.manual_seed(42)# 1. 数据预处理,该写法非常类似于管道pipeline
# transforms 模块提供了一系列常用的图像预处理操作# 先归一化,再标准化
transform = transforms.Compose([transforms.ToTensor(),  # 转换为张量并归一化到[0,1]transforms.Normalize((0.1307,), (0.3081,))  # MNIST数据集的均值和标准差,这个值很出名,所以直接使用
])
import matplotlib.pyplot as plt# 2. 加载MNIST数据集,如果没有会自动下载
train_dataset = datasets.MNIST(root='./data',train=True,download=True,transform=transform
)test_dataset = datasets.MNIST(root='./data',train=False,transform=transform
)
# 随机选择一张图片,可以重复运行,每次都会随机选择
sample_idx = torch.randint(0, len(train_dataset), size=(1,)).item() # 随机选择一张图片的索引
# len(train_dataset) 表示训练集的图片数量;size=(1,)表示返回一个索引;torch.randint() 函数用于生成一个指定范围内的随机数,item() 方法将张量转换为 Python 数字
image, label = train_dataset[sample_idx] # 获取图片和标签
# 可视化原始图像(需要反归一化)
def imshow(img):img = img * 0.3081 + 0.1307  # 反标准化npimg = img.numpy()plt.imshow(npimg[0], cmap='gray') # 显示灰度图像plt.show()print(f"Label: {label}")
imshow(image)

在这里插入图片描述

上述是昨天的代码,我们介绍了图像数据的预处理,这是我们首次接触图像数据,他和之前的结构化数据有什么差异点呢?
结构化数据(如表格)的形状通常是 (样本数, 特征数),例如 (1000, 5) 表示 1000 个样本,每个样本有 5 个特征。图像数据的形状更复杂,需要保留空间信息(高度、宽度、通道),因此不能直接用一维向量表示。其中颜色信息往往是最开始输入数据的通道的含义,因为每个颜色可以用红绿蓝三原色表示,因此一般输入数据的通道数是 3。

维度索引含义数值说明
0通道数(Channels)1 表示这是一张灰度图(仅有一个颜色通道,如黑白照片)。
如果是彩色图(如RGB),通道数为 3
1高度(Height)28 表示图像的垂直像素数为28像素。
2宽度(Width)28 表示图像的水平像素数为28像素。

MNIST 数据集是手写数字的 灰度图像,每个像素点的取值范围为 0-255(黑白程度),因此 通道数为 1。图像尺寸统一为 28×28 像素。

# 打印下图片的形状
image.shape

在这里插入图片描述

1.2 彩色图像

在 PyTorch 中,图像数据的形状通常遵循 (通道数, 高度, 宽度) 的格式(即 Channel First 格式),这与常见的 (高度, 宽度, 通道数)(Channel Last,如 NumPy 数组)不同。—注意顺序关系,

注意点:

  1. 如果用matplotlib库来画图,需要转换下顺序,我们后续介绍
  2. 模型输入通常需要 批次维度(Batch Size),形状变为 (批次大小, 通道数, 高度, 宽度)。例如,批量输入 10 张 MNIST 图像时,形状为 (10, 1, 28, 28)。
# 打印一张彩色图像,用cifar-10数据集
import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np# 设置随机种子确保结果可复现
torch.manual_seed(42)
# 定义数据预处理步骤
transform = transforms.Compose([transforms.ToTensor(),  # 转换为张量并归一化到[0,1]transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 标准化处理
])# 加载CIFAR-10训练集
trainset = torchvision.datasets.CIFAR10(root='./data',train=True,download=True,transform=transform
)# 创建数据加载器
trainloader = torch.utils.data.DataLoader(trainset,batch_size=4,shuffle=True
)# CIFAR-10的10个类别
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')# 随机选择一张图片
sample_idx = torch.randint(0, len(trainset), size=(1,)).item()
image, label = trainset[sample_idx]# 打印图片形状
print(f"图像形状: {image.shape}")  # 输出: torch.Size([3, 32, 32])
print(f"图像类别: {classes[label]}")# 定义图像显示函数(适用于CIFAR-10彩色图像)
def imshow(img):img = img / 2 + 0.5  # 反标准化处理,将图像范围从[-1,1]转回[0,1]npimg = img.numpy()plt.imshow(np.transpose(npimg, (1, 2, 0)))  # 调整维度顺序:(通道,高,宽) → (高,宽,通道)plt.axis('off')  # 关闭坐标轴显示plt.show()# 显示图像
imshow(image)

在这里插入图片描述

注意,因为这里设计到图像的显示,所以就需要调整维度顺序:(通道,高,宽) → (高,宽,通道)
在这里插入图片描述

介绍下超参数的优化 优化器

优化手写数字问题 引出cnn

如何计算显存一次性可以读取多少张

随机种子

二、 图像相关的神经网络的定义

考虑课程内容的推进,今日的内容只提定义,不涉及训练和测试过程

2.1 黑白图像模型的定义

# 先归一化,再标准化
transform = transforms.Compose([transforms.ToTensor(),  # 转换为张量并归一化到[0,1]transforms.Normalize((0.1307,), (0.3081,))  # MNIST数据集的均值和标准差,这个值很出名,所以直接使用
])
import matplotlib.pyplot as plt# 2. 加载MNIST数据集,如果没有会自动下载
train_dataset = datasets.MNIST(root='./data',train=True,download=True,transform=transform
)

test_dataset = datasets.MNIST(
root=‘./data’,
train=False,
transform=transform
)

# 定义两层MLP神经网络
class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.flatten = nn.Flatten()  # 将28x28的图像展平为784维向量self.layer1 = nn.Linear(784, 128)  # 第一层:784个输入,128个神经元self.relu = nn.ReLU()  # 激活函数self.layer2 = nn.Linear(128, 10)  # 第二层:128个输入,10个输出(对应10个数字类别)def forward(self, x):x = self.flatten(x)  # 展平图像x = self.layer1(x)   # 第一层线性变换x = self.relu(x)     # 应用ReLU激活函数x = self.layer2(x)   # 第二层线性变换,输出logitsreturn x# 初始化模型
model = MLP()device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)  # 将模型移至GPU(如果可用)from torchsummary import summary  # 导入torchsummary库
print("\n模型结构信息:")
summary(model, input_size=(1, 28, 28))  # 输入尺寸为MNIST图像尺寸

在这里插入图片描述

我们关注和之前结构化MLP的差异

  1. 输入需要展平操作

MLP 的输入层要求输入是一维向量,但 MNIST 图像是二维结构(28×28 像素),形状为 [1, 28, 28](通道 × 高 × 宽)。nn.Flatten()展平操作 将二维图像 “拉成” 一维向量(784=28×28 个元素),使其符合全连接层的输入格式。

其中不定义这个flatten方法,直接在前向传播的过程中用 x = x.view(-1, 28 * 28) 将图像展平为一维向量也可以实现

  1. 输入数据的尺寸包含了通道数input_size=(1, 28, 28)

  2. 参数的计算

  • 第一层 layer1(全连接层)

权重参数:输入维度 × 输出维度 = 784 × 128 = 100,352

偏置参数:输出维度 = 128

合计:100,352 + 128 = 100,480

  • 第二层 layer2(全连接层)

权重参数:输入维度 × 输出维度 = 128 × 10 = 1,280

偏置参数:输出维度 = 10
合计:1,280 + 10 = 1,290

  • 总参数:100,480(layer1) + 1,290(layer2) = 101,770

2.2 彩色图像模型的定义

class MLP(nn.Module):def __init__(self, input_size=3072, hidden_size=128, num_classes=10):super(MLP, self).__init__()# 展平层:将3×32×32的彩色图像转为一维向量# 输入尺寸计算:3通道 × 32高 × 32宽 = 3072self.flatten = nn.Flatten()# 全连接层self.fc1 = nn.Linear(input_size, hidden_size)  # 第一层self.relu = nn.ReLU()self.fc2 = nn.Linear(hidden_size, num_classes)  # 输出层def forward(self, x):x = self.flatten(x)  # 展平:[batch, 3, 32, 32] → [batch, 3072]x = self.fc1(x)      # 线性变换:[batch, 3072] → [batch, 128]x = self.relu(x)     # 激活函数x = self.fc2(x)      # 输出层:[batch, 128] → [batch, 10]return x# 初始化模型
model = MLP()device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)  # 将模型移至GPU(如果可用)from torchsummary import summary  # 导入torchsummary库
print("\n模型结构信息:")
summary(model, input_size=(3, 32, 32))  # CIFAR-10 彩色图像(3×32×32)

在这里插入图片描述

  • 第一层 layer1(全连接层)

权重参数:输入维度 × 输出维度 = 3072 × 128 = 393,216

偏置参数:输出维度 = 128

合计:393,216 + 128 = 393,344

  • 第二层 layer2(全连接层)

权重参数:输入维度 × 输出维度 = 128 × 10 = 1,280

偏置参数:输出维度 = 10

合计:1,280 + 10 = 1,290

  • 总参数:393,344(layer1) + 1,290(layer2) = 394,634

2.3 模型定义与batchsize的关系

实际定义中,输入图像还存在batchsize这一维度

在 PyTorch 中,模型定义和输入尺寸的指定不依赖于 batch_size,无论设置多大的 batch_size,模型结构和输入尺寸的写法都是不变的。

class MLP(nn.Module):def __init__(self):super().__init__()self.flatten = nn.Flatten() # nn.Flatten()会将每个样本的图像展平为 784 维向量,但保留 batch 维度。self.layer1 = nn.Linear(784, 128)self.relu = nn.ReLU()self.layer2 = nn.Linear(128, 10)def forward(self, x):x = self.flatten(x)  # 输入:[batch_size, 1, 28, 28] → [batch_size, 784]x = self.layer1(x)   # [batch_size, 784] → [batch_size, 128]x = self.relu(x)x = self.layer2(x)   # [batch_size, 128] → [batch_size, 10]return x

PyTorch 模型会自动处理 batch 维度(即第一维),无论 batch_size 是多少,模型的计算逻辑都不变。batch_size 是在数据加载阶段定义的,与模型结构无关。

summary(model, input_size=(1, 28, 28))中的input_size不包含 batch 维度,只需指定样本的形状(通道 × 高 × 宽)。

总结:batch_size与模型定义的关系**

组件是否涉及batch_size示例代码
模型定义❌ 完全无关class MLP(nn.Module) 中无需提及batch_size
torchsummary❌ 只需要样本形状(不含batch维度)summary(model, input_size=(1, 28, 28))
DataLoader✅ 在此设置batch_sizeDataLoader(dataset, batch_size=64)
训练循环✅ 数据自动以batch形式输入模型for data, target in train_loader: ...

三、显存占用的主要组成部分

昨天说到了在面对数据集过大的情况下,由于无法一次性将数据全部加入到显存中,所以采取了分批次加载这种方式。即一次只加载一部分数据,保证在显存的范围内。

那么显存设置多少合适呢?如果设置的太小,那么每个batchsize的训练不足以发挥显卡的能力,浪费计算资源;如果设置的太大,会出现OOT(out of memory)

显存一般被以下内容占用:

  1. 模型参数与梯度:模型的权重(Parameters)和对应的梯度(Gradients)会占用显存,尤其是深度神经网络(如 Transformer、ResNet 等),一个 1 亿参数的模型(如 BERT-base),单精度(float32)参数占用约 400MB(1e8×4Byte),加上梯度则翻倍至 800MB(每个权重参数都有其对应的梯度)。

  2. 部分优化器(如 Adam)会为每个参数存储动量(Momentum)和平方梯度(Square Gradient),进一步增加显存占用(通常为参数大小的 2-3 倍)

  3. 其他开销。

oom处理方案

下面以手写数据集为例
from torch.utils.data import DataLoader

# 定义训练集的数据加载器,并指定batch_size
train_loader = DataLoader(dataset=train_dataset,  # 加载的数据集batch_size=64,          # 每次加载64张图像shuffle=True            # 训练时打乱数据顺序
)# 定义测试集的数据加载器(通常batch_size更大,减少测试时间)
test_loader = DataLoader(dataset=test_dataset,batch_size=1000,shuffle=False
)

手写数据集(MNIST)和当前 MLP 模型,显存占用的计算可以简化为以下几个部分。

3.1 模型参数与梯度(FP32 精度)

参数总量:101,770 个参数

  • 1字节(Byte)= 8位(bit),是计算机存储的最小寻址单位。
  • 位(bit)是二进制数的最小单位(0或1),例如0b1010表示4位二进制数。
  • 1KB=1024字节;1MB=1024KB=1,048,576字节

常见数据类型的字节占用

数据类型位数(bit)字节(Byte)数值范围(近似)
float32(单精度浮点数)324±1.7×10^38
float64(双精度浮点数)648±1.8×10^308
uint8(无符号8位整数)810~255
  • MNIST数据集的原始图像像素值为0-255的整数(uint8类型,占1字节),表示灰度值(0=黑,255=白)。
  • 但PyTorch的transforms.ToTensor()会将其归一化到[0, 1]范围,并转换为 float32类型(浮点型更适合神经网络计算)。

计算示例:单张MNIST图像的显存占用

  1. 原始像素值(uint8,未转换时)

    • 尺寸:28×28像素
    • 单像素占用:1字节(uint8)
    • 总占用:28×28×1 = 784字节 ≈ 0.766 KB
  2. 转换为float32张量后

    • 尺寸:1×28×28(通道×高×宽)
    • 单像素占用:4字节(float32)
    • 总占用:1×28×28×4 = 3136字节 ≈ 3.06 KB

单精度(float32)参数占用:101,770 × 4 Byte ≈ 403 KB

梯度是损失函数对模型参数的导数(∂Loss/∂Weight),用于指示参数更新的方向和幅度。梯度是损失函数对模型参数的导数(∂Loss/∂Weight),用于指示参数更新的方向和幅度。因此在默认情况下,梯度的数据类型和数目与参数相同。

梯度占用(反向传播时):与参数相同,合计约 806 KB

3.2 优化器状态

SGD
  • SGD优化器不存储额外动量,因此无额外显存占用。
  • SGD 随机梯度下降,最基础的优化器,直接沿梯度反方向更新参数。
  • 参数更新公式:w = w - learning_rate * gradient
Adam
  • Adam优化器:自适应学习率优化器,结合了动量(Momentum)和梯度平方的指数移动平均。
  • 每个参数存储动量(m)和平方梯度(v),占用约 101,770 × 8 Byte ≈ 806 KB
  • 动量(m):每个参数对应一个动量值,数据类型与参数相同(float32),占用 403 KB。
  • 梯度平方(v):每个参数对应一个梯度平方值,数据类型与参数相同(float32),占用 403 KB。

3.3 数据批量(batch_size)的显存占用

  • 单张图像尺寸1×28×28(通道×高×宽),归一化转换为张量后为float32类型
    • 单张图像显存占用:1×28×28×4 Byte = 3,136 Byte ≈ 3 KB
  • 批量数据占用batch_size × 单张图像占用
    • 例如:batch_size=64 时,数据占用为 64×3 KB ≈ 192 KB
    • batch_size=1024 时,数据占用为 1024×3 KB ≈ 3 MB

3.4. 前向/反向传播中间变量

  • 对于两层MLP,中间变量(如layer1的输出)占用较小:
    • batch_size×128维向量:batch_size×128×4 Byte = batch_size×512 Byte
    • 例如batch_size=1024时,中间变量约 512 KB
      以SGD为例,此时其他参数占用固定,batchsize会影响显存占用
batch_size数据占用中间变量总显存占用(近似)
64192 KB32 KB~1 MB
256768 KB128 KB~1.7 MB
10243 MB512 KB~4.5 MB
409612 MB2 MB~15 MB
在 PyTorch 中,在使用DataLoader加载数据时,如果不指定batch_size参数,默认值是1

,即每次迭代返回一个样本。这与一次性使用全部数据进行训练是完全不同的概念。如果想要一次性使用全部数据进行训练,需要手动将batch_size设置为数据集的大小,但对于大型数据集,这样做通常会导致内存不足,因为一次性将所有数据加载到内存中可能会超出硬件的内存限制。

大规模数据时,通常从16开始测试,然后逐渐增加,确保代码运行正常且不报错,直到出现 内存不足(OOM)报错 或训练效果下降,此时选择略小于该值的 batch_size。

训练时候搭配 nvidia-smi 监控显存占用,合适的 batch_size = 硬件显存允许的最大值 × 0.8(预留安全空间),并通过训练效果验证调整。
补充说明: batchsize对于训练的影响

在深度学习中,使用较大的 batch_size(批量大小)相比单样本训练(batch_size=1)有以下核心优势

  • 并行计算能力最大化,减小训练时间;且大幅减少更新次数
  • 梯度方向更准确,单样本训练的梯度仅基于单个数据点,可能包含大量噪声(尤其是数据分布不均或存在异常值时)。大 batch_size 的梯度是多个样本的平均值,能抵消单个样本的随机性,梯度方向更接近真实分布的 “全局最优方向”。会让训练过程更稳定,波动更小
场景计算过程参数更新方式
batch_size=1计算1个样本的损失 $ L_1 $ → 反向传播得到梯度 $ g_1 $直接用 $ g_1 $ 更新参数
batch_size=12计算12个样本的损失 $ L_1, L_2, …, L_{12} $ → 分别求梯度 $ g_1, g_2, …, g_{12} $ → 计算平均梯度 $ \bar{g} = \frac{g_1 + g_2 + … + g_{12}}{12} $用平均梯度 $ \bar{g} $ 更新参数

http://www.hkcw.cn/article/uJqVTCYhVQ.shtml

相关文章

AI预测3D新模型百十个定位预测+胆码预测+去和尾2025年5月29日第92弹

从今天开始,咱们还是暂时基于旧的模型进行预测,好了,废话不多说,按照老办法,重点8-9码定位,配合三胆下1或下2,杀1-2个和尾,再杀6-8个和值,可以做到100-300注左右。 (1)定…

【AI智能体】Coze 插件从使用到实战详解

目录 一、前言 二、Coze 插件介绍 2.1 什么是插件 2.1.1 插件主要功能 2.1.2 coze 插件常用类型 2.1.3 coze 插件优势 2.2 插件与工具 2.3 插件费用说明 2.4 使用限制 2.5 权限说明 2.6 coze添加插件入口 三、Coze插件创建与使用 3.1 前置准备 3.1.1 查看api列表 …

python实现一个示波器仿真,可以改参数同步效果

代码 import sys import numpy as np import matplotlib.pyplot as plt from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar from matplotlib.an…

【前端】使用grid布局封装断点式进度条

业务需求要求展示一个动态进度条,不同于第三方插件的进度条,这个ui设计的是断点式进度条,效果当然是美观大方,但是因为没有现成的第三方插件可以实现,这当然难不倒一个成熟的前端开发工程师。 根据ui设计可以看到进度条…

[ctfshow web入门] web78

信息收集 表面上没有任何过滤,自由发挥 if(isset($_GET[file])){$file $_GET[file];include($file); }else{highlight_file(__FILE__); }解题 这些解法都在web32解释过,不再详细解释,有需要点击超链接:[ctfshow web入门] web3…

小白的进阶之路系列之六----人工智能从初步到精通pytorch数据集与数据加载器

本文将介绍以下内容: 数据集与数据加载器 数据迁移 如何建立神经网络 数据集与数据加载器 处理数据样本的代码可能会变得混乱且难以维护;理想情况下,我们希望我们的数据集代码与模型训练代码解耦,以获得更好的可读性和模块化。PyTorch提供了两个数据原语:torch.utils…

Memory Repair (二)

Implementing BIRA and BISR Logic 本节介绍如何在 circuit 中插入 repair logic。重点是插入 BISR 逻辑。只要内存库文件中存在 RepairAnalysis 包装器,并且该实例的 repair_analysis_present 属性未设置为 “Off”,就会在内存 BIST 逻辑(控…

Vue 3 的路由管理

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、简易路由器二、Vue Router创建路由器使用路由器创建页面前言 路由指的是通过不同 URL 访问不同页面的方式。 根据路由管辖权的归属不同,可以分为前端路由(Client-Side Routing)和后端路由(Server-Side Routing)。…

油猴脚本开发基础

1. 油猴脚本深度解析 1.1 什么是油猴脚本? 本质:基于JavaScript的浏览器扩展脚本工作原理:在网页加载时注入自定义JS代码核心能力: 修改DOM结构拦截网络请求操作浏览器API存储本地数据 应用场景: 广告屏蔽网页功能增…

练习:对象数组 1

定义数组存储 3 个商品对象。商品的属性:商品的 id,名字,价格,库存。创建三个商品对象,并把商品对象存入到数组当中。 //对象数组 1 package demo01; public class Goods {private int goodsid;private String goodsN…

Baklib知识中台驱动业务创新

知识中台构建四库体系 Baklib通过打造知识资源库、案例库、规则库及专家库四大核心模块,构建起企业级知识中台的底层架构。其中,知识资源库采用多维度标签体系对文档、报告等结构化与非结构化数据进行分类存储;案例库通过智能抽取技术沉淀业…

“文化人”董宇辉也学会了表演 为消费者争取福利

“文化人”董宇辉也学会了表演 为消费者争取福利。董宇辉在直播间开始“表演”与品牌商谈判的戏码。最近,他在销售某品牌电视时,商家表示要收取最高200元的安装费。董宇辉当场拒绝,表示不合理,并坚持不接受收费。最终,商家负责人现场沟通后决定为所有购买电视的朋友免费安…

H5通用模态框可滚动弹框

弹框要求&#xff1a; 1、弹框图片宽高不限制&#xff0c;自适应 2、关闭按钮固定在图片下方 3、长图时弹框图片可滚动&#xff0c;遮罩层固定 4、点击遮罩层可关闭按钮&#xff0c;不冒泡 图例&#xff1a; 代码 <div class"image-modal" v-if"curSideI…

代码随想录打卡|Day51 图论(dijkstra(堆优化版)精讲、Bellman_ford 算法精讲)

图论part09 dijkstra&#xff08;堆优化版&#xff09;精讲(不熟悉) 代码随想录链接 题目链接 import java.util.*;class Edge {int to; // 邻接顶点int val; // 边的权重Edge(int to, int val) {this.to to;this.val val;} }class MyComparison implements Comparator<…

RS232/485转Profinet网关通讯气体检漏仪案例分享

RS232/485转Profinet网关通讯气体检漏仪案例分享 RS232转Profinet网关作为一种重要的工业通讯设备&#xff0c;其作用是将传统的RS232接口设备转换为现代的Profinet接口&#xff0c;从而实现与现代自动化控制系统的无缝对接&#xff0c;提高系统的集成度和性能。 气体检漏仪作…

电感专题归纳

文章目录 6.2.1 概念6.2.1x 电感电流6.2.2 储能6.2.3 伏秒原则6.2.4 电感元件6.2.5 电感充放电 6.3 换路定则6.4 储能总结6.5 串并联6.5.1 电容串联6.5.2 电容并联6.5.4 电感串联6.5.5电感并联6.5.3 电容与电导 6.6 电容与电感的滤波 电感在电路中的坐拥只有两个字&#xff0c;…

2023-ICLR-ReAct 首次结合Thought和Action提升大模型解决问题的能力

关于普林斯顿大学和Google Research, Brain Team合作的一篇文章, 在语言模型中协同Reasoning推理和Action行动。 论文地址&#xff1a;https://arxiv.org/abs/2210.03629 代码&#xff1a;https://github.com/ysymyth/ReAct.git 其他复现 langchain &#xff1a;https://pytho…

吴艳妮落泪道歉 带伤参赛憾失金牌

5月29日,在亚洲田径锦标赛女子100米栏决赛中,吴艳妮以13秒07的成绩获得铜牌。赛后她走路有些一瘸一拐。在接受采访时,吴艳妮哽咽着向大家道歉:“很感谢你们来现场为我加油,没为中国队拿到这个冠军,很对不起大家。我的伤还没养好,不想为自己过多的解释,我还是觉得我在亚…

群辉(synology)NAS老机器连接出现网页端可以进入,但是本地访问输入一样的账号密码是出现错误时解决方案

群辉&#xff08;synology&#xff09;NAS老机器连接出现网页端可以进入&#xff0c;但是本地访问输入一样的账号密码是出现错误时解决方案 老机器 装的win7 系统 登入后端网页端的时候正常&#xff0c;但是本地访问登入时输入登入网页端一样的密码时候出现问题解决方案 1.登…

力扣每日一题——连接两棵树后最大目标节点数目 ||

目录 题目链接&#xff1a;3373. 连接两棵树后最大目标节点数目 II - 力扣&#xff08;LeetCode&#xff09; 题目描述 解法一&#xff1a;​​双树贡献分离法​​ Java写法&#xff1a; C写法&#xff1a; 运行时间 时间复杂度和空间复杂度 总结 题目链接&#xff1a;…