[yolov11改进系列]基于yolov11引入高效坐标注意力机制CoordAttention的python源码+训练源码

article/2025/6/18 16:47:24

【CoordAttention介绍】

在轻量级网络上的研究表明,通道注意力会给模型带来比较显著的性能提升,但是通道注意力通常会忽略对生成空间选择性注意力图非常重要的位置信息。因此,新加坡国立大学的提出了一种为轻量级网络设计的新的注意力机制,该机制将位置信息嵌入到了通道注意力中,称为Coordinate Attention(下文也称CA),该论文收录于CVPR2021。不同于通道注意力将输入通过2D全局池化转化为单个特征向量,CoordAttention将通道注意力分解为两个沿着不同方向聚合特征的1D特征编码过程。这样的好处是可以沿着一个空间方向捕获长程依赖,沿着另一个空间方向保留精确的位置信息。然后,将生成的特征图分别编码,形成一对方向感知和位置敏感的特征图,它们可以互补地应用到输入特征图来增强感兴趣的目标的表示。CA简单灵活且高效,可以插入经典的轻量级网络(如MobileNetV2)在几乎不带来额外计算开销的前提下,提升网络的精度。实验表明,CoordAttention不仅仅对于分类任务有不错的提高,对目标检测、实例分割这类密集预测的任务,效果提升更加明显。

论文地址:http://arxiv.org/abs/2103.02907

论文源码https://github.com/Andrew-Qibin/CoordAttention

模型结构
CA是一种高效的注意力机制,通过将位置信息嵌入到通道注意力中,使得轻量级网络能够在更大的区域上进行注意力,同时避免了产生大量的计算开销。为了缓解2D全局池化造成的位置信息丢失,作者将通道注意力分解为两个并行的1D特征编码过程,有效地将空间坐标信息整合到生成的注意图中。更具体来说,作者利用两个一维全局池化操作分别将垂直和水平方向的输入特征聚合为两个独立的方向感知特征图。然后,这两个嵌入特定方向信息的特征图分别被编码为两个注意力图,每个注意力图都捕获了输入特征图沿着一个空间方向的长程依赖。因此,位置信息就被保存在生成的注意力图里了,两个注意力图接着被乘到输入特征图上来增强特征图的表示能力。SEAttention、CBAM以及CA结构如下所示。


一个coordinate attention模块可以看作一个用来增强特征表示能力的计算单元。它可以将任何中间张量X作为输入并输出一个有着增强的表示能力的同样尺寸的输出Y。CA模块通过精确的位置信息对通道关系和长程依赖进行编码,类似SE模块,也分为两个步骤:坐标信息嵌入(coordinate information embedding)和坐标注意力生成(coordinate attention generation)。首先,我们来看坐标信息嵌入这部分。全局池化常用于通道注意力中来全局编码空间信息为通道描述符,因此难以保存位置信息。为了促进注意力模块能够捕获具有精确位置信息的空间长程依赖,作者将全局池化分解为一对一维特征编码操作。具体而言,对输入X,先使用尺寸( H , 1)和(1, W)的池化核沿着水平坐标方向和竖直坐标方向对每个通道进行编码。接着,为了更好地利用上面coordinate information embedding模块产生的具有全局感受野并拥有精确位置信息的表示,设计了coordinate attention generation操作,它生成注意力图。

 【yolov11框架介绍】

2024 年 9 月 30 日,Ultralytics 在其活动 YOLOVision 中正式发布了 YOLOv11。YOLOv11 是 YOLO 的最新版本,由美国和西班牙的 Ultralytics 团队开发。YOLO 是一种用于基于图像的人工智能的计算机模

Ultralytics YOLO11 概述

YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。

Key Features 主要特点

  • 增强的特征提取:YOLO11采用改进的主干和颈部架构,增强了特征提取能力,以实现更精确的目标检测和复杂任务性能。
  • 针对效率和速度进行优化:YOLO11 引入了精致的架构设计和优化的训练管道,提供更快的处理速度并保持准确性和性能之间的最佳平衡。
  • 使用更少的参数获得更高的精度:随着模型设计的进步,YOLO11m 在 COCO 数据集上实现了更高的平均精度(mAP),同时使用的参数比 YOLOv8m 少 22%,从而在不影响精度的情况下提高计算效率。
  • 跨环境适应性:YOLO11可以无缝部署在各种环境中,包括边缘设备、云平台以及支持NVIDIA GPU的系统,确保最大的灵活性。
  • 支持的任务范围广泛:无论是对象检测、实例分割、图像分类、姿态估计还是定向对象检测 (OBB),YOLO11 旨在应对各种计算机视觉挑战。

​​

与之前的版本相比,Ultralytics YOLO11 有哪些关键改进?

Ultralytics YOLO11 与其前身相比引入了多项重大进步。主要改进包括:

  • 增强的特征提取:YOLO11采用改进的主干和颈部架构,增强了特征提取能力,以实现更精确的目标检测。
  • 优化的效率和速度:精细的架构设计和优化的训练管道可提供更快的处理速度,同时保持准确性和性能之间的平衡。
  • 使用更少的参数获得更高的精度:YOLO11m 在 COCO 数据集上实现了更高的平均精度(mAP),参数比 YOLOv8m 少 22%,从而在不影响精度的情况下提高计算效率。
  • 跨环境适应性:YOLO11可以跨各种环境部署,包括边缘设备、云平台和支持NVIDIA GPU的系统。
  • 支持的任务范围广泛:YOLO11 支持多种计算机视觉任务,例如对象检测、实例分割、图像分类、姿态估计和定向对象检测 (OBB)

【测试环境】

windows10 x64

ultralytics==8.3.0

torch==2.3.1

【改进流程】

1. 新增CoordAtt.py实现模块(代码太多,核心模块源码请参考改进步骤.docx)然后在同级目录下面创建一个__init___.py文件写代码

from .CoordAtt import *

2. 文件修改步骤

修改tasks.py文件

创建模型配置文件

yolo11-CoordAtt.yaml内容如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [-1, 1, CoordAtt, []]  # 23 - [[16, 19, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)
3. 验证集成

使用新建的yaml配置文件启动训练任务:

from ultralytics import YOLOif __name__ == '__main__':model = YOLO('yolo11-CoordAtt.yaml')  # build from YAML and transfer weights# Train the modelresults = model.train(data='coco128.yaml',epochs=100, imgsz=640, batch=8, device=0, workers=1, save=True,resume=False)

成功集成后,训练日志中将显示CoordAtt模块的初始化信息,表明已正确加载到模型中。

【训练说明】

第一步:首先安装好yolov11必要模块,可以参考yolov11框架安装流程,然后卸载官方版本pip uninstall ultralytics,最后安装改进的源码pip install .
第二步:将自己数据集按照dataset文件夹摆放,要求文件夹名字都不要改变
第三步:分别打开train.py,coco128.yaml和模型参数yaml文件修改必要的参数,最后执行python train.py即可训练

【提供文件】

├── [官方源码]ultralytics-8.3.0.zip
├── train/
│   ├── coco128.yaml
│   ├── dataset/
│   │   ├── train/
│   │   │   ├── images/
│   │   │   │   ├── firc_pic_1.jpg
│   │   │   │   ├── firc_pic_10.jpg
│   │   │   │   ├── firc_pic_11.jpg
│   │   │   │   ├── firc_pic_12.jpg
│   │   │   │   ├── firc_pic_13.jpg
│   │   │   ├── labels/
│   │   │   │   ├── classes.txt
│   │   │   │   ├── firc_pic_1.txt
│   │   │   │   ├── firc_pic_10.txt
│   │   │   │   ├── firc_pic_11.txt
│   │   │   │   ├── firc_pic_12.txt
│   │   │   │   ├── firc_pic_13.txt
│   │   └── val/
│   │       ├── images/
│   │       │   ├── firc_pic_100.jpg
│   │       │   ├── firc_pic_81.jpg
│   │       │   ├── firc_pic_82.jpg
│   │       │   ├── firc_pic_83.jpg
│   │       │   ├── firc_pic_84.jpg
│   │       ├── labels/
│   │       │   ├── firc_pic_100.txt
│   │       │   ├── firc_pic_81.txt
│   │       │   ├── firc_pic_82.txt
│   │       │   ├── firc_pic_83.txt
│   │       │   ├── firc_pic_84.txt
│   ├── train.py
│   ├── yolo11-CoordAtt.yaml
│   └── 训练说明.txt
├── [改进源码]ultralytics-8.3.0.zip
├── 改进原理.docx
└── 改进流程.docx

 【常见问题汇总】
问:为什么我训练的模型epoch显示的map都是0或者map精度很低?
回答:由于源码改进过,因此不能直接从官方模型微调,而是从头训练,这样学习特征能力会很弱,需要训练很多epoch才能出现效果。此外由于改进的源码框架并不一定能够保证会超过官方精度,而且也有可能会存在远远不如官方效果,甚至精度会很低。这说明改进的框架并不能取得很好效果。所以说对于框架改进只是提供一种可行方案,至于改进后能不能取得很好map还需要结合实际训练情况确认,当然也不排除数据集存在问题,比如数据集比较单一,样本分布不均衡,泛化场景少,标注框不太贴合标注质量差,检测目标很小等等原因
【重要说明】
我们只提供改进框架一种方案,并不保证能够取得很好训练精度,甚至超过官方模型精度。因为改进框架,实际是一种比较复杂流程,包括框架原理可行性,训练数据集是否合适,训练需要反正验证以及同类框架训练结果参数比较,这个是十分复杂且漫长的过程。


http://www.hkcw.cn/article/piJGwcYNXl.shtml

相关文章

AI Agent的“搜索大脑“进化史:从Google API到智能搜索生态的技术变革

AI Agent搜索革命的时代背景 2025年agent速度发展之快似乎正在验证"2025年是agent元年"的说法,而作为agent最主要的应用工具之一(另外一个是coding),搜索工具也正在呈现快速的发展趋势。Google在2024年12月推出Gemini Deep Research&#xff0…

以防长:辛瓦尔已死 这些人是下个目标

当地时间5月31日,以色列国防军发表声明,确认在以色列国防军与以色列国家安全总局(辛贝特)今年5月13日的联合行动中,以色列空军对巴勒斯坦伊斯兰抵抗运动(哈马斯)军事领导人穆罕默德辛瓦尔发动空袭并将其打死。以军声明称,此次空袭还打死了包括哈马斯拉法旅指挥官穆罕默…

8旬老人砍掉小区20年香樟树 私自修剪引发争议

家住浦东新区上南山水苑一期的业主王先生反映,小区内一群平均年龄七十多岁的老人以提高绿化环境为由,私自圈占公共绿化变为私人花园已有两年。物业和居委会多次劝阻无效,老人们的花越种越多。本周二上午,一位老人用网购的斧头和电锯砍伐了小花园内一棵20多年的香樟树。投诉…

代码随想录算法训练营第60期第五十三天打卡

大家好,我们今天来到了最后一章图论,其实图论比较难,涉及的算法也比较多,今天比较重要的就是深度优先搜索与广度优先搜索,后面的迪杰斯特拉算法等算法在我们求最短路都会涉及到,还有最近公共祖先&#xff0…

【Bluedriod】蓝牙协议栈GD模块(GD_SHIM_MODULE)启动机制及源码解析

本文深入剖析Android蓝牙协议栈中GD模块的启动机制,从模块生命周期管理、状态转换、异步初始化,到核心组件(HCI层、协议栈管理器、广播/扫描/测距模块)的协同运作。通过源码分析揭示蓝牙协议栈如何通过分层设计实现硬件抽象化、事…

threejsPBR材质与纹理贴图

1. PBR材质简介 本节课没有具体的代码,就是给大家科普一下PBR材质,所谓PBR就是,基于物理的渲染(physically-based rendering)。 Three.js提供了两个PBR材质相关的APIMeshStandardMaterial和MeshPhysicalMaterial,MeshPhysicalMaterial是Mes…

Leetcode 3231. 要删除的递增子序列的最小数量

1.题目基本信息 1.1.题目描述 给定一个整数数组 nums,你可以执行任意次下面的操作: 从数组删除一个 严格递增 的 子序列。 您的任务是找到使数组为 空 所需的 最小 操作数。 1.2.题目地址 https://leetcode.cn/problems/minimum-number-of-increas…

【SpringBoot实战】优雅关闭服务

文章目录 一、什么是优雅关闭?二、优雅关闭的核心步骤三、SpringBoot优雅关闭实现四、关键注意事项1. 超时时间必须配置2. 信号支持局限性3. 特殊请求处理 五、底层实现原理六、总结 一、什么是优雅关闭? 优雅关闭(Graceful Shutdown&#x…

Redis:功能特性和应用场景

🌈 个人主页:Zfox_ 🔥 系列专栏:Redis 本篇开始对于 Redis 进行正式介绍和学习 🔥 认识 Redis 在开始 Redis 学习前,要先认识一下 Redis Redis 的设计,是想要把它当做是一个数据库&#xff…

etcd详解

一、核心特性二、架构原理三、应用场景四、运维实践五、常见问题与解决方案六、与 ZooKeeper 和 Consul 的对比总结 etcd 是一个高可用的分布式键值存储系统,广泛应用于云原生领域,尤其作为 Kubernetes 的核心组件,用于存储集群的配置、状态和…

CTFHub-RCE 命令注入-综合练习

观察源代码 代码里面可以发现过滤了运算符、目录分隔符、分号、空格还有一些关键字也被过滤了 判断是Windows还是Linux 源代码中有 ping -c 4 说明是Linux 查看有哪些文件 用换行符的url值(%0a)代替分号注意:在url中输入 ?ip127.0.0.1%0a#…

网络编程1_网络编程引入

为什么需要网络编程? 用户再在浏览器中,打开在线视频资源等等,实质上说通过网络,获取到从网络上传输过来的一个资源。 与打开本地的文件类似,只是这个文件的来源是网络。相比本地资源来说,网络提供了更为…

性能优化 - 理论篇:性能优化的七类技术手段

文章目录 Pre引言性能优化的七类技术手段性能优化策略一览表1. 复用优化2. 计算优化2.1 并行执行2.2 变同步为异步2.3 惰性加载 3. 结果集优化3.1 数据格式与协议选择3.2 字段精简与按需返回3.3 批量处理与分页3.4 索引与位图加速 4. 资源冲突优化4.1 锁的分类与特点4.2 无锁与…

Android之ListView

1:简单列表(ArrayAdapter) 1:运行的结果: 2:首先在MyListView里面创建一个按钮,点击的时候进行跳转。 这里让我吃惊的是,Button里面可以直接设置onClick .java里面的方法。 也即是点击这个按钮之后就会去…

Unity程序集

对于Unity的程序集,具体内容可以参考Unity官方文档,程序集定义 - 预定义程序集 比如Unity的默认程序集,Assembly-CSharp.dll,还有其他的比如 Assembly-CSharp-Editor.dll,Assembly-CSharp-firstpass.dll 没有指定或…

【算法】递归与分治策略

一、算法整体思想 一般情况下,问题的规模越大,解题所需的计算时间越长,并且解题的难度可能会变得很大。 问题的规模越小,解题所需的计算时间往往越短,也比较容易处理。 当直接解决一个较大的问题时,有时是…

NVIDIA Mellanox BlueField-2 DPU(Data Processing Unit)智能网卡的调试和使用

专有名词 OOB: BMC: BFB: EMMC: 关键词解释eMMCEmbedded Multi-Media Card——把 NAND 闪存颗粒与控制器封装在一起的板载存储件,类似手机里的“内置储存” .deb:文件是​​Debian软件包格式​​的专…

(LeetCode 每日一题) 909. 蛇梯棋 (广度优先搜索bfs)

题目&#xff1a;909. 蛇梯棋 思路&#xff1a;广度优先搜索bfs队列&#xff0c;时间复杂度0(6*n^2)。 细节看注释 C版本&#xff1a; class Solution { public:int snakesAndLadders(vector<vector<int>>& board) {int nboard.size();// vis[i]&#xff1a;…

医疗多模态共情推理与学习一体化网络构成初探

1 引言:多模态共情推理的概念内涵与技术背景 在当今医疗人工智能领域,多模态共情推理正逐步成为突破临床决策支持系统瓶颈的关键范式。这一技术通过融合认知共情与情感共情的双重机制,模拟人类医生的综合诊断思维过程,实现对患者全方位健康状态的深度理解。医疗环境中的共…

RFID技术深度剖析:从原理、协议到S50卡与FM17550读写

知识点1【RFID的概述】 学习目标是学习对这个卡片的读写 用已有的手册实现对卡片内数据的读写操作 RFID&#xff1a;&#xff08;Radio Frequency Identification&#xff09;无线射频识别 通过无线识别目标&#xff0c;并读写相关数据&#xff0c;而无需接触 位于感知层&…