Python训练营打卡Day41(2025.5.31)

article/2025/6/25 12:14:54

知识回顾

  1. 数据增强
  2. 卷积神经网络定义的写法
  3. batch归一化:调整一个批次的分布,常用与图像数据
  4. 特征图:只有卷积操作输出的才叫特征图
  5. 调度器:直接修改基础学习率

卷积操作常见流程如下:

1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层

  1. Flatten -> Dense (with Dropout,可选) -> Dense (Output)
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 1. 数据预处理
# 训练集:使用多种数据增强方法提高模型泛化能力
train_transform = transforms.Compose([# 随机裁剪图像,从原图中随机截取32x32大小的区域transforms.RandomCrop(32, padding=4),# 随机水平翻转图像(概率0.5)transforms.RandomHorizontalFlip(),# 随机颜色抖动:亮度、对比度、饱和度和色调随机变化transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),# 随机旋转图像(最大角度15度)transforms.RandomRotation(15),# 将PIL图像或numpy数组转换为张量transforms.ToTensor(),# 标准化处理:每个通道的均值和标准差,使数据分布更合理transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 测试集:仅进行必要的标准化,保持数据原始特性,标准化不损失数据信息,可还原
test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=train_transform  # 使用增强后的预处理
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=test_transform  # 测试集不使用增强
)# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 定义CNN模型的定义(替代原MLP)
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()  # 继承父类初始化# ---------------------- 第一个卷积块 ----------------------# 卷积层1:输入3通道(RGB),输出32个特征图,卷积核3x3,边缘填充1像素self.conv1 = nn.Conv2d(in_channels=3,       # 输入通道数(图像的RGB通道)out_channels=32,     # 输出通道数(生成32个新特征图)kernel_size=3,       # 卷积核尺寸(3x3像素)padding=1            # 边缘填充1像素,保持输出尺寸与输入相同)# 批量归一化层:对32个输出通道进行归一化,加速训练self.bn1 = nn.BatchNorm2d(num_features=32)# ReLU激活函数:引入非线性,公式:max(0, x)self.relu1 = nn.ReLU()# 最大池化层:窗口2x2,步长2,特征图尺寸减半(32x32→16x16)self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)  # stride默认等于kernel_size# ---------------------- 第二个卷积块 ----------------------# 卷积层2:输入32通道(来自conv1的输出),输出64通道self.conv2 = nn.Conv2d(in_channels=32,      # 输入通道数(前一层的输出通道数)out_channels=64,     # 输出通道数(特征图数量翻倍)kernel_size=3,       # 卷积核尺寸不变padding=1            # 保持尺寸:16x16→16x16(卷积后)→8x8(池化后))self.bn2 = nn.BatchNorm2d(num_features=64)self.relu2 = nn.ReLU()self.pool2 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:16x16→8x8# ---------------------- 第三个卷积块 ----------------------# 卷积层3:输入64通道,输出128通道self.conv3 = nn.Conv2d(in_channels=64,      # 输入通道数(前一层的输出通道数)out_channels=128,    # 输出通道数(特征图数量再次翻倍)kernel_size=3,padding=1            # 保持尺寸:8x8→8x8(卷积后)→4x4(池化后))self.bn3 = nn.BatchNorm2d(num_features=128)self.relu3 = nn.ReLU()  # 复用激活函数对象(节省内存)self.pool3 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:8x8→4x4# ---------------------- 全连接层(分类器) ----------------------# 计算展平后的特征维度:128通道 × 4x4尺寸 = 128×16=2048维self.fc1 = nn.Linear(in_features=128 * 4 * 4,  # 输入维度(卷积层输出的特征数)out_features=512          # 输出维度(隐藏层神经元数))# Dropout层:训练时随机丢弃50%神经元,防止过拟合self.dropout = nn.Dropout(p=0.5)# 输出层:将512维特征映射到10个类别(CIFAR-10的类别数)self.fc2 = nn.Linear(in_features=512, out_features=10)def forward(self, x):# 输入尺寸:[batch_size, 3, 32, 32](batch_size=批量大小,3=通道数,32x32=图像尺寸)# ---------- 卷积块1处理 ----------x = self.conv1(x)       # 卷积后尺寸:[batch_size, 32, 32, 32](padding=1保持尺寸)x = self.bn1(x)         # 批量归一化,不改变尺寸x = self.relu1(x)       # 激活函数,不改变尺寸x = self.pool1(x)       # 池化后尺寸:[batch_size, 32, 16, 16](32→16是因为池化窗口2x2)# ---------- 卷积块2处理 ----------x = self.conv2(x)       # 卷积后尺寸:[batch_size, 64, 16, 16](padding=1保持尺寸)x = self.bn2(x)x = self.relu2(x)x = self.pool2(x)       # 池化后尺寸:[batch_size, 64, 8, 8]# ---------- 卷积块3处理 ----------x = self.conv3(x)       # 卷积后尺寸:[batch_size, 128, 8, 8](padding=1保持尺寸)x = self.bn3(x)x = self.relu3(x)x = self.pool3(x)       # 池化后尺寸:[batch_size, 128, 4, 4]# ---------- 展平与全连接层 ----------# 将多维特征图展平为一维向量:[batch_size, 128*4*4] = [batch_size, 2048]x = x.view(-1, 128 * 4 * 4)  # -1自动计算批量维度,保持批量大小不变x = self.fc1(x)           # 全连接层:2048→512,尺寸变为[batch_size, 512]x = self.relu3(x)         # 激活函数(复用relu3,与卷积块3共用)x = self.dropout(x)       # Dropout随机丢弃神经元,不改变尺寸x = self.fc2(x)           # 全连接层:512→10,尺寸变为[batch_size, 10](未激活,直接输出logits)return x  # 输出未经过Softmax的logits,适用于交叉熵损失函数# 初始化模型
model = CNN()
model = model.to(device)  # 将模型移至GPU(如果可用)criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器# 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。
# 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,        # 指定要控制的优化器(这里是Adam)mode='min',       # 监测的指标是"最小化"(如损失函数)patience=3,       # 如果连续3个epoch指标没有改善,才降低LRfactor=0.5        # 降低LR的比例(新LR = 旧LR × 0.5)
)# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):model.train()  # 设置为训练模式# 记录每个 iteration 的损失all_iter_losses = []  # 存储所有 batch 的损失iter_indices = []     # 存储 iteration 序号# 记录每个 epoch 的准确率和损失train_acc_history = []test_acc_history = []train_loss_history = []test_loss_history = []for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)  # 移至GPUoptimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数# 记录当前 iteration 的损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计准确率和损失running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 每100个批次打印一次训练信息if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 计算当前epoch的平均训练损失和准确率epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totaltrain_acc_history.append(epoch_train_acc)train_loss_history.append(epoch_train_loss)# 测试阶段model.eval()  # 设置为评估模式test_loss = 0correct_test = 0total_test = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testtest_acc_history.append(epoch_test_acc)test_loss_history.append(epoch_test_loss)# 更新学习率调度器scheduler.step(epoch_test_loss)print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)# 绘制每个 epoch 的准确率和损失曲线plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc  # 返回最终测试准确率# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 7. 绘制每个 epoch 的准确率和损失曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 4))# 绘制准确率曲线plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='训练准确率')plt.plot(epochs, test_acc, 'r-', label='测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.title('训练和测试准确率')plt.legend()plt.grid(True)# 绘制损失曲线plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='训练损失')plt.plot(epochs, test_loss, 'r-', label='测试损失')plt.xlabel('Epoch')plt.ylabel('损失值')plt.title('训练和测试损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 8. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始使用CNN训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# # 保存模型
# torch.save(model.state_dict(), 'cifar10_cnn_model.pth')
# print("模型已保存为: cifar10_cnn_model.pth")

 

 

@浙大疏锦行 


http://www.hkcw.cn/article/SqmoDjCFeQ.shtml

相关文章

MySQL--day10--数据处理之增删改

(以下内容全部来自上述课程) 增删改 0. 储备工作 #0.储备工作 USE atguigudb; CREATE TABLE IF NOT EXISTS emp1( id INT, name VARCHAR(15), hire_date DATE, salary DOUBLE(10,2) );1. 插入数据 1.1 一条一条添加 # (1)…

新版智慧景区信息化系统解决方案

该智慧景区信息化系统解决方案以云 + 大数据 + 物联网技术为核心,秉持 “汇聚联合,突显数据隐性价值” 理念,通过数据融合、业务融合、技术融合,构建 “营销、服务、管理” 三位一体模式。方案涵盖智慧票务、智能入园、精准营销、景区管理(如用电安全监测、森林防火、客流…

VAE在扩散模型中的技术实现与应用

VAE在扩散模型中的技术实现与应用 技术概述 在生成式AI领域,VAE(变分自编码器)与扩散模型的结合代表了当前最先进的技术方向之一。这种结合不仅解决了扩散模型在处理高维数据时的效率问题,还提供了更稳定的训练过程和更好的生成质…

C#中实现两个对象部分相同属性值的复制

在C#中实现两个对象部分相同属性值的复制,可通过以下方案实现: 一、手动赋值(基础方案) 直接通过属性名逐个赋值,适用于属性较少且明确的情况: // 示例类定义 public class Source { public int Id …

SOC-ESP32S3部分:22-分区表

飞书文档https://x509p6c8to.feishu.cn/wiki/F9PdwnOKhiTRDWk4cr1cIZsvneh 无论是前面我们说到的NVS,还是后面用到的文件系统,他们都必须有存储的载体,例如NVS,我们说过它是存储在Flash中的,那具体是Flash的哪个位置呢…

华为OD机试真题——找出两个整数数组中同时出现的整数(2025A卷:100分)Java/python/JavaScript/C++/C语言/GO六种最佳实现

2025 A卷 100分 题型 本文涵盖详细的问题分析、解题思路、代码实现、代码详解、测试用例以及综合分析; 并提供Java、python、JavaScript、C++、C语言、GO六种语言的最佳实现方式! 2025华为OD真题目录+全流程解析/备考攻略/经验分享 华为OD机试真题《找出两个整数数组中同时出…

KWIC—Implicit Invocation

KWIC—Implicit Invocation ✏️ KWIC—Implicit Invocation 文章目录 KWIC—Implicit Invocation📝KWIC—Implicit Invocation🧩KWIC🧩核心组件🧩ImplementationScheme⚖️ 隐式调用 vs 显式调用对比 🌟 总结 &#x…

JWT 入门

一、JWT 概述 1. 扩展(Cookie、Session、Token) 灵魂拷问:为什么你的淘宝账号关闭后,购物车还在?其实这是Cookie 在搞事情。它就像是一种入场券,有该入场券就可以随意进出关卡。但这有个致命的弱点,Cookie是存在客户…

传统液晶瓶颈待破?铁电液晶如何实现显示技术逆袭

一、传统液晶显示:繁华背后的技术枷锁 在消费电子与专业显示领域,液晶技术(LCD)凭借成熟的产业链和性价比优势,长期占据主流地位。然而,随着 VR/AR、车载显示、高端投影等新兴场景的崛起,传统液…

Mybatis:灵活掌控SQL艺术

在前面的文章中,小编分享了spring中相关的知识,但是没有分享到,如何去更高效操作数据库。 操作数据库传统的方法就是通过JDBC来进行操作。 这个传统方法使用上可谓是够麻烦的 1.首先创建一个数据源对象 2.设置该数据源的属性(…

STM32CubeMX定时器配置

STM32CubeMX定时器配置 一,Mode界面1,Slave Mode (从模式)2,Trigger Source (触发源) 三,Channelx(通道模式)1,Input Capture2,Output Compare3,PWM Generation4&#xf…

可灵2.1 vs Veo 3:AI视频生成谁更胜一筹?

在Google发布Veo 3几天后,可灵显然感受到了压力,发布了即将推出的视频模型系列可灵 2.1的早期体验版。 据我了解,有三种不同的模式: 可灵 2.1 标准模式: 720p分辨率 仅支持图像转视频(生成更快,一致性更好) 5秒视频仍需20积分 可灵 2.1 专业模式: 1080p分辨率 仅在图…

推荐几个不错的AI入门学习视频

引言:昨天推荐了几本AI入门书(AI入门书),反响还不错。今天,我再推荐几个不错的AI学习视频,希望对大家有帮助。 网上关于AI的学习视频特别多。有收费的,也有免费的。我今天只推荐免费的。 我们按…

【机器学习】支持向量机

文章目录 一、支持向量机简述1.概念2.基本概念3.算法介绍4.线性可分5.算法流程 二、实验1.代码介绍2.模型流程3.实验结果4.实验小结 一、支持向量机简述 1.概念 支持向量机(SVM)是一类按监督学习方式对数据进行二元分类的广义线性分类器,其…

scale up 不能优化 TCP 聚合性能

scale up 作为一种系统扩展优化的方法,旨在提高系统组件的执行效率,比如替换更高性能的硬件或算法。是否可以此为依据优化 TCP 呢,例如通过多条路径聚合带宽实现吞吐优化(对,还是那个 MPTCP),答案是否定的。 因为 TCP…

深度学习|pytorch基本运算-广播失效

【1】引言 前序文章中,已经学习了pytorch基本运算中的生成随机张量、生成多维张量,以及张量的变形、加减和广播运算。 今天的文章在之前学习的基础上,进一步探索。 前序文章链接为: 深度学习|pytorch基本运算-CSDN博客 【2】…

Asp.Net Core SignalR的分布式部署

文章目录 前言一、核心二、解决方案架构三、实现方案1.使用 Azure SignalR Service2.Redis Backplane(Redis 背板方案)3.负载均衡配置粘性会话要求无粘性会话方案(仅WebSockets)完整部署示例(Redis Docker)性能优化技…

Linux环境搭建MCU开发环境

操作系统版本: ubuntu 22.04 文本编辑器: vscode 开发板: stm32f103c8t6 调试器: st-link 前言 步骤一: 安装交叉编译工具链 步骤二: 创建工程目录结构 步骤三: 调试…

VR/AR 视网膜级显示破局:10000PPI 如何终结颗粒感时代?

一、传统液晶 “纱窗效应”:VR 沉浸体验的最大绊脚石 当用户首次戴上 VR 头显时,眼前密密麻麻的像素网格往往打破沉浸感 —— 这正是传统液晶显示在近眼场景下的致命缺陷。受限于 500-600PPI 的像素密度,即使达到 4K 分辨率,等效到…

【教学类-36-10】20250531蝴蝶图案描边,最适合大小(一页1图1图、2图图案不同、2图图案相同对称)

背景说明: 之前做了动物头像扇子(描边20),并制作成一页一套图案对称两张 【教学类-36-09】20250526动物头像扇子的描边(通义万相)对称图40张,根据图片长宽,自动旋转图片,最大化图片-CSDN博客文章浏览阅读1k次,点赞37次,收藏6次。【教学类-36-09】20250526动物头像…