【Python训练营打卡】day40 @浙大疏锦行

article/2025/6/19 6:00:52

DAY 40 训练和测试的规范写法

知识点回顾:

1.  彩色和灰度图片测试和训练的规范写法:封装在函数中

2.  展平操作:除第一个维度batchsize外全部展平

3.  dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout

作业:仔细学习下测试和训练代码的逻辑,这是基础,这个代码框架后续会一直沿用,后续的重点慢慢就是转向模型定义阶段了。

单通道图片的规范写法

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 1. 数据预处理
transform = transforms.Compose([transforms.ToTensor(),  # 转换为张量并归一化到[0,1]transforms.Normalize((0.1307,), (0.3081,))  # MNIST数据集的均值和标准差
])# 2. 加载MNIST数据集
train_dataset = datasets.MNIST(root='./data',train=True,download=True,transform=transform
)test_dataset = datasets.MNIST(root='./data',train=False,transform=transform
)# 3. 创建数据加载器
batch_size = 64  # 每批处理64个样本
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 定义模型、损失函数和优化器
class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.flatten = nn.Flatten()  # 将28x28的图像展平为784维向量self.layer1 = nn.Linear(784, 128)  # 第一层:784个输入,128个神经元self.relu = nn.ReLU()  # 激活函数self.layer2 = nn.Linear(128, 10)  # 第二层:128个输入,10个输出(对应10个数字类别)def forward(self, x):x = self.flatten(x)  # 展平图像x = self.layer1(x)   # 第一层线性变换x = self.relu(x)     # 应用ReLU激活函数x = self.layer2(x)   # 第二层线性变换,输出logitsreturn x# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 初始化模型
model = MLP()
model = model.to(device)  # 将模型移至GPU(如果可用)criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数,适用于多分类问题
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):model.train()  # 设置为训练模式# 新增:记录每个 iteration 的损失all_iter_losses = []  # 存储所有 batch 的损失iter_indices = []     # 存储 iteration 序号(从1开始)for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)  # 移至GPU(如果可用)optimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数# 记录当前 iteration 的损失(注意:这里直接使用单 batch 损失,而非累加平均)iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)  # iteration 序号从1开始# 统计准确率和损失(原逻辑保留,用于 epoch 级统计)running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 每100个批次打印一次训练信息(可选:同时打印单 batch 损失)if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 原 epoch 级逻辑(测试、打印 epoch 结果)不变epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totalepoch_test_loss, epoch_test_acc = test(model, test_loader, criterion, device)print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)# 保留原 epoch 级曲线(可选)# plot_metrics(train_losses, test_losses, train_accuracies, test_accuracies, epochs)return epoch_test_acc  # 返回最终测试准确率# 6. 测试模型
def test(model, test_loader, criterion, device):model.eval()  # 设置为评估模式test_loss = 0correct = 0total = 0with torch.no_grad():  # 不计算梯度,节省内存和计算资源for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()avg_loss = test_loss / len(test_loader)accuracy = 100. * correct / totalreturn avg_loss, accuracy  # 返回损失和准确率# 7.绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 8. 执行训练和测试(设置 epochs=2 验证效果)
epochs = 2  
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

彩色图片的规范写法

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 1. 数据预处理
transform = transforms.Compose([transforms.ToTensor(),                # 转换为张量transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 标准化处理
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=transform
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=transform
)# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 定义MLP模型(适应CIFAR-10的输入尺寸)
class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.flatten = nn.Flatten()  # 将3x32x32的图像展平为3072维向量self.layer1 = nn.Linear(3072, 512)  # 第一层:3072个输入,512个神经元self.relu1 = nn.ReLU()self.dropout1 = nn.Dropout(0.2)  # 添加Dropout防止过拟合self.layer2 = nn.Linear(512, 256)  # 第二层:512个输入,256个神经元self.relu2 = nn.ReLU()self.dropout2 = nn.Dropout(0.2)self.layer3 = nn.Linear(256, 10)  # 输出层:10个类别def forward(self, x):# 第一步:将输入图像展平为一维向量x = self.flatten(x)  # 输入尺寸: [batch_size, 3, 32, 32] → [batch_size, 3072]# 第一层全连接 + 激活 + Dropoutx = self.layer1(x)   # 线性变换: [batch_size, 3072] → [batch_size, 512]x = self.relu1(x)    # 应用ReLU激活函数x = self.dropout1(x) # 训练时随机丢弃部分神经元输出# 第二层全连接 + 激活 + Dropoutx = self.layer2(x)   # 线性变换: [batch_size, 512] → [batch_size, 256]x = self.relu2(x)    # 应用ReLU激活函数x = self.dropout2(x) # 训练时随机丢弃部分神经元输出# 第三层(输出层)全连接x = self.layer3(x)   # 线性变换: [batch_size, 256] → [batch_size, 10]return x  # 返回未经过Softmax的logits# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 初始化模型
model = MLP()
model = model.to(device)  # 将模型移至GPU(如果可用)criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):model.train()  # 设置为训练模式# 记录每个 iteration 的损失all_iter_losses = []  # 存储所有 batch 的损失iter_indices = []     # 存储 iteration 序号for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)  # 移至GPUoptimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数# 记录当前 iteration 的损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计准确率和损失running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 每100个批次打印一次训练信息if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 计算当前epoch的平均训练损失和准确率epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / total# 测试阶段model.eval()  # 设置为评估模式test_loss = 0correct_test = 0total_test = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testprint(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)return epoch_test_acc  # 返回最终测试准确率# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 7. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# # 保存模型
# torch.save(model.state_dict(), 'cifar10_mlp_model.pth')
# # print("模型已保存为: cifar10_mlp_model.pth")

由于深度mlp的参数过多,为了避免过拟合在这里引入了dropout这个操作,他可以在训练阶段随机丢弃一些神经元,避免过拟合情况。dropout的取值也是超参数。

在测试阶段,由于开启了eval模式,会自动关闭dropout。

可以继续调用这个函数来复用

# 7. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

此时你会发现MLP(多层感知机)在图像任务上表现较差(即使增加深度和轮次也只能达到 50-55% 准确率),主要原因与图像数据的空间特性和MLP 的结构缺陷密切相关。

1. MLP 的每一层都是全连接层,输入图像会被展平为一维向量(如 CIFAR-10 的 32x32x3 图像展平为 3072 维向量)。图像中相邻像素通常具有强相关性(如边缘、纹理),但 MLP 将所有像素视为独立特征,无法利用局部空间结构。例如,识别 “汽车轮胎” 需要邻近像素的组合信息,而 MLP 需通过大量参数单独学习每个像素的关联,效率极低。

2. 深层 MLP 的参数规模呈指数级增长,容易过拟合

所以我们接下来将会学习CNN架构,CNN架构的参数规模相对较小,且训练速度更快,而且CNN架构可以解决图像识别问题,而MLP不能。

笔记

在 PyTorch 中处理张量(Tensor)时,以下是关于展平(Flatten)、维度调整(如 view/reshape)等操作的关键点,这些操作通常不会影响第一个维度(即批量维度batch_size):

图像任务中的张量形状

输入张量的形状通常为:
(batch_size, channels, height, width)
例如:(batch_size, 3, 28, 28)
其中,batch_size 代表一次输入的样本数量。

NLP 任务中的张量形状

输入张量的形状可能为:
(batch_size, sequence_length)
此时,batch_size 同样是第一个维度。

1. Flatten 操作

  • 功能:将张量展平为一维数组,但保留批量维度。
  • 示例:
    • 输入形状:(batch_size, 3, 28, 28)(图像数据)
    • Flatten 后形状:(batch_size, 3×28×28) = (batch_size, 2352)
    • 说明:第一个维度batch_size不变,后面的所有维度被展平为一个维度。

2. view/reshape 操作

  • 功能:调整张量维度,但必须显式保留或指定批量维度。
  • 示例:
    • 输入形状:(batch_size, 3, 28, 28)
    • 调整为:(batch_size, -1)
    • 结果:展平为两个维度,保留batch_size,第二个维度自动计算为3×28×28=2352

总结

  • 批量维度不变性:无论进行 flatten、view 还是 reshape 操作,第一个维度batch_size通常保持不变。
  • 动态维度指定:使用-1让 PyTorch 自动计算该维度的大小,但需确保其他维度的指定合理,避免形状不匹配错误。

@浙大疏锦行


http://www.hkcw.cn/article/qXvwXuTdiZ.shtml

相关文章

软件技术如何赚钱

1. 开发并销售软件产品​ ​ 独立应用开发:针对特定需求或市场痛点,开发移动应用、桌面软件或网页应用。例如,开发一款专注于时间管理的移动应用,帮助用户提高工作效率。以 Python 结合 Kivy 框架开发一个简单的待办事项应用为例…

【Github/Gitee Webhook触发自动部署-Jenkins】

Github/Gitee Webhook触发自动部署-Jenkins #mermaid-svg-ryhZQMOzmkQZNMwX {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-ryhZQMOzmkQZNMwX .error-icon{fill:#552222;}#mermaid-svg-ryhZQMOzmkQZNMwX .error-tex…

华为OD机试真题——最小的调整次数/特异性双端队列(2025A卷:100分)Java/python/JavaScript/C++/C语言/GO六种最佳实现

2025 A卷 100分 题型 本文涵盖详细的问题分析、解题思路、代码实现、代码详解、测试用例以及综合分析; 并提供Java、python、JavaScript、C++、C语言、GO六种语言的最佳实现方式! 2025华为OD真题目录+全流程解析/备考攻略/经验分享 华为OD机试真题《最小的调整次数/特异性双端…

建筑兔零基础人工智能自学记录101|Transformer(1)-14

Transformer 谷歌提出,一组编码-解码器 可以同时处理,通过位置编码来处理单词 实质是token词语接龙(只是有不同的概率) token对应向量 Transformer简述 文生图就需要用到transformer黑箱 token 内部层次 中间主要是embedding…

网线水晶头接法与8根线芯作用解析

网线的正确接法至关重要,它直接影响网络的稳定性与传输速度。而了解每根线的作用,更是深入掌握网络布线知识的关键。常见的网线为非屏蔽双绞线(UTP),内部包含 8 根不同颜色的线芯,两两相互缠绕,…

【GESP真题解析】第 2 集 GESP 三级样题卷编程题 1:逛商场

大家好,我是莫小特。 这篇文章给大家分享 GESP 三级样题卷编程题第 1 题:逛商场。 题目链接 洛谷链接:B3848 逛商场 一、完成输入 根据输入格式描述,输入一共有三行,第一行为整数 N,数据范围: 1 ≤ N ≤ 100 1 \le N \le 100 1≤N≤100,使用 int 类型。 第二行为 N …

Nacos实战——动态 IP 黑名单过滤

1、需求分析 一些恶意用户(‏可能是黑客、爬虫、DDoS ؜攻击者)可能频繁请求服务器资​源,导致资源占用过高。针对这种问题,可以通过IP‏ 封禁,可以有效拉؜黑攻击者,防止资源​被滥用,保障合法…

基于Web的濒危野生动物保护信息管理系统设计(源码+定制+开发)濒危野生动物监测与保护平台开发 面向公众参与的野生动物保护与预警信息系统

博主介绍: ✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台…

流媒体协议分析:流媒体传输的基石

在流媒体传输过程中,协议的选择至关重要,它决定了数据如何封装、传输和解析,直接影响着视频的播放质量和用户体验。本文将深入分析几种常见的流媒体传输协议,探讨它们的特点、应用场景及优缺点。 协议分类概述 流媒体传输协议根据…

通过mqtt 发布温湿度

参考 用HAL库改写江科大的stm32入门例子-补充DHT11_江科大stm32安装hal库-CSDN博客 老夫上课的时候 ,这部份讲的比较多 ,出发点是 安利 “单总线”的具体使用。 这里无非是引入dht11 库, 使用前初始化 然后通话dht11库的方法 读取数据 &…

ApiHug 1.3.9 支持 Spring 3.5.0 + Plugin 0.7.4 内置小插件升级!儿童节快乐!!!

有用内置小插件 - ApiHug小插件,大用途https://apihug.github.io/zhCN-docs/how/005_helpful_inner_plugin SDK: [1.3.9-RELEASE] - 2025-06-01 Move the router auto-processing to an internal plugin for enhanced flexibility.Translate the OAS to json sch…

CTFHub-RCE 命令注入-无过滤

观察源代码 判断是Windows还是Linux 源代码中有 ping -c 4 说明是Linux 查看有哪些文件 127.0.0.1|ls 发现除了index.php文件外,还存在一个可疑的文件 打开flag文件 我们尝试打开这个文件 127.0.0.1|cat 19492844826916.php 可是发现 文本内容显示不出来&…

Mysql库的操作和表的操作

Mysql库和表的操作 库的操作1.查看数据库列表2.创建数据库3.使用数据库4.查看当前在那个数据库中5.显示数据库的创建语句6.修改数据库7.删除数据库8.备份和恢复数据库9.查看数据的连接情况(简单来说就是查看有多少人使用你的数据库) 表的操作1.创建表2.查看表结构3.修改表本身(…

Excel如何分开查看工作表方便数据撰写

首先我这里有2class和3class两个工作表 接下来我们点击视图 按照顺序分别点击新建窗口和全部重排 ### 然后就是这样 接下来就OK了

C++23 已弃用特性

文章目录 1. std::aligned_storage 与 std::aligned_union1.1 特性介绍1.2 被弃用的原因1.3 替代方案 2. std::numeric_limits::has_denorm2.1 特性介绍2.2 被弃用的原因 3. 总结 C23 已弃用特性包括:std::aligned_storage、std::aligned_union 与 std::numeric_lim…

MySQL事务和索引原理

目录 1. MySQL事务原理 1.1. 事务的基本概念 1.2. 事务隔离的实现机制 1.3. 事务的启动方式 2. 索引的原理 2.1. 索引的作用 2.2. 索引常用模型及适用场景 2.3. InnoDB中的索引结构 2.4. 索引维护 2.5. 覆盖索引 2.6. 联合索引和最左缀原则 2.7. 索引下推 1. MySQL事…

第十一章 Java基础-继承

文章目录 1.继承来源2.继承特点3.子类能继承父类中哪些内容1.继承来源 是为了解决代码的重复冗余。

【11408学习记录】考研英语写作提分秘籍:2013真题邀请信精讲+万能模板套用技巧

邀请信 英语写作2013年考研英语(一)真题小作文题目分析写作思路第一段:第二段:锦囊妙句1:锦囊妙句2:锦囊妙句3:锦囊妙句5:锦囊妙句6:锦囊妙句9:锦囊妙句14&am…

汽车电子笔记之:有关汽车电子AUTOSAR的一些名词解释

目录 1、概述 2、基础概念 2.1、SPEM 2.2、SPEC 2.3、SIP包 2.4、SLP 2.5、HLP 2.6 、AUTOSAR方法论 2.6.1、ECU Extruct 2.6.2、ECU Configuration Values(EcuC) 2.6.3、Software Component Deion 2.6.4、Measurement and Calibration S…

ASP.NET Core OData 实践——Lesson8增删改查原始类型Property(C#)

大纲 支持的接口主要模型设计控制器设计数据源查询(GET)查询基础类型的原始类型属性查询基类类型Entity的基础类型属性的值查询基类类型Entity的派生类型属性的原始值 查询派生类型Entity的基础类型属性查询派生类型Entity的属性值查询派生类型Entity的派生类型属性的原始值 新…