60天python训练计划----day40

article/2025/7/28 6:40:55

DAY 40 训练和测试的规范写法

知识点回顾:

  1. 彩色和灰度图片测试和训练的规范写法:封装在函数中
  2. 展平操作:除第一个维度batchsize外全部展平
  3. dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout

一.单通道图片的规范写法

# 先继续之前的代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader , Dataset # DataLoader 是 PyTorch 中用于加载数据的工具
from torchvision import datasets, transforms # torchvision 是一个用于计算机视觉的库,datasets 和 transforms 是其中的模块
import matplotlib.pyplot as plt
import warnings
# 忽略警告信息
warnings.filterwarnings("ignore")
# 设置随机种子,确保结果可复现
torch.manual_seed(42)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 1. 数据预处理
transform = transforms.Compose([transforms.ToTensor(),  # 转换为张量并归一化到[0,1]transforms.Normalize((0.1307,), (0.3081,))  # MNIST数据集的均值和标准差
])# 2. 加载MNIST数据集
train_dataset = datasets.MNIST(root='./data',train=True,download=True,transform=transform
)test_dataset = datasets.MNIST(root='./data',train=False,transform=transform
)# 3. 创建数据加载器
batch_size = 64  # 每批处理64个样本
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 定义模型、损失函数和优化器
class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.flatten = nn.Flatten()  # 将28x28的图像展平为784维向量self.layer1 = nn.Linear(784, 128)  # 第一层:784个输入,128个神经元self.relu = nn.ReLU()  # 激活函数self.layer2 = nn.Linear(128, 10)  # 第二层:128个输入,10个输出(对应10个数字类别)def forward(self, x):x = self.flatten(x)  # 展平图像x = self.layer1(x)   # 第一层线性变换x = self.relu(x)     # 应用ReLU激活函数x = self.layer2(x)   # 第二层线性变换,输出logitsreturn x# 初始化模型
model = MLP()
model = model.to(device)  # 将模型移至GPU(如果可用)# from torchsummary import summary  # 导入torchsummary库
# print("\n模型结构信息:")
# summary(model, input_size=(1, 28, 28))  # 输入尺寸为MNIST图像尺寸criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数,适用于多分类问题
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):model.train()  # 设置为训练模式# 新增:记录每个 iteration 的损失all_iter_losses = []  # 存储所有 batch 的损失iter_indices = []     # 存储 iteration 序号(从1开始)for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):# enumerate() 是 Python 内置函数,用于遍历可迭代对象(如列表、元组)并同时获取索引和值。# batch_idx:当前批次的索引(从 0 开始)# (data, target):当前批次的样本数据和对应的标签,是一个元组,这是因为dataloader内置的getitem方法返回的是一个元组,包含数据和标签。# 只需要记住这种固定写法即可data, target = data.to(device), target.to(device)  # 移至GPU(如果可用)optimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数# 记录当前 iteration 的损失(注意:这里直接使用单 batch 损失,而非累加平均)iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)  # iteration 序号从1开始# 统计准确率和损失running_loss += loss.item() #将loss转化为标量值并且累加到running_loss中,计算总损失_, predicted = output.max(1) # output:是模型的输出(logits),形状为 [batch_size, 10](MNIST 有 10 个类别)# 获取预测结果,max(1) 返回每行(即每个样本)的最大值和对应的索引,这里我们只需要索引total += target.size(0) # target.size(0) 返回当前批次的样本数量,即 batch_size,累加所有批次的样本数,最终等于训练集的总样本数correct += predicted.eq(target).sum().item() # 返回一个布尔张量,表示预测是否正确,sum() 计算正确预测的数量,item() 将结果转换为 Python 数字# 每100个批次打印一次训练信息(可选:同时打印单 batch 损失)if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 测试、打印 epoch 结果epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totalepoch_test_loss, epoch_test_acc = test(model, test_loader, criterion, device)print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)# 保留原 epoch 级曲线(可选)# plot_metrics(train_losses, test_losses, train_accuracies, test_accuracies, epochs)return epoch_test_acc  # 返回最终测试准确率

        之前我们用mlp训练鸢尾花数据集的时候并没有用函数的形式来封装训练和测试过程,这样写会让代码更加具有逻辑-----隔离参数和内容。

1. 后续直接修改参数就行,不需要去找到对应操作的代码

2. 方便复用,未来有多模型对比时,就可以复用这个函数

        这里我们先不写早停策略,因为规范的早停策略需要用到验证集,一般还需要划分测试集

1. 划分数据集:训练集(用于训练)、验证集(用于早停和调参)、测试集(用于最终报告性能)。

2. 在训练过程中,使用验证集触发早停。

3. 训练结束后,仅用测试集运行一次测试函数,得到最终准确率。

        测试函数和绘图函数均被封装在了train函数中,但是test和绘图函数在定义train函数之后,这是因为在 Python 中,函数定义的顺序不影响调用,只要在调用前已经完成定义即可。

# 6. 测试模型(不变)
def test(model, test_loader, criterion, device):model.eval()  # 设置为评估模式test_loss = 0correct = 0total = 0with torch.no_grad():  # 不计算梯度,节省内存和计算资源for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()avg_loss = test_loss / len(test_loader)accuracy = 100. * correct / totalreturn avg_loss, accuracy  # 返回损失和准确率# 7. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 8. 执行训练和测试(设置 epochs=2 验证效果)
epochs = 2  
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

 

二.彩色图片的规范写法 

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 1. 数据预处理
transform = transforms.Compose([transforms.ToTensor(),                # 转换为张量transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 标准化处理
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=transform
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=transform
)# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 定义MLP模型(适应CIFAR-10的输入尺寸)
class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.flatten = nn.Flatten()  # 将3x32x32的图像展平为3072维向量self.layer1 = nn.Linear(3072, 512)  # 第一层:3072个输入,512个神经元self.relu1 = nn.ReLU()self.dropout1 = nn.Dropout(0.2)  # 添加Dropout防止过拟合self.layer2 = nn.Linear(512, 256)  # 第二层:512个输入,256个神经元self.relu2 = nn.ReLU()self.dropout2 = nn.Dropout(0.2)self.layer3 = nn.Linear(256, 10)  # 输出层:10个类别def forward(self, x):# 第一步:将输入图像展平为一维向量x = self.flatten(x)  # 输入尺寸: [batch_size, 3, 32, 32] → [batch_size, 3072]# 第一层全连接 + 激活 + Dropoutx = self.layer1(x)   # 线性变换: [batch_size, 3072] → [batch_size, 512]x = self.relu1(x)    # 应用ReLU激活函数x = self.dropout1(x) # 训练时随机丢弃部分神经元输出# 第二层全连接 + 激活 + Dropoutx = self.layer2(x)   # 线性变换: [batch_size, 512] → [batch_size, 256]x = self.relu2(x)    # 应用ReLU激活函数x = self.dropout2(x) # 训练时随机丢弃部分神经元输出# 第三层(输出层)全连接x = self.layer3(x)   # 线性变换: [batch_size, 256] → [batch_size, 10]return x  # 返回未经过Softmax的logits# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 初始化模型
model = MLP()
model = model.to(device)  # 将模型移至GPU(如果可用)criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):model.train()  # 设置为训练模式# 记录每个 iteration 的损失all_iter_losses = []  # 存储所有 batch 的损失iter_indices = []     # 存储 iteration 序号for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)  # 移至GPUoptimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数# 记录当前 iteration 的损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计准确率和损失running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 每100个批次打印一次训练信息if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 计算当前epoch的平均训练损失和准确率epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / total# 测试阶段model.eval()  # 设置为评估模式test_loss = 0correct_test = 0total_test = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testprint(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)return epoch_test_acc  # 返回最终测试准确率# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 7. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# # 保存模型
# torch.save(model.state_dict(), 'cifar10_mlp_model.pth')
# # print("模型已保存为: cifar10_mlp_model.pth")

 

 

@浙大疏锦行


http://www.hkcw.cn/article/kMZcIpjAEa.shtml

相关文章

leetcode:479. 最大回文数乘积(python3解法,数学相关算法题)

难度:简单 给定一个整数 n ,返回 可表示为两个 n 位整数乘积的 最大回文整数 。因为答案可能非常大,所以返回它对 1337 取余 。 示例 1: 输入:n 2 输出:987 解释:99 x 91 9009, 9009 % 1337 …

vue2 + webpack 老项目升级 node v22 + vite + vue2 实战全记录

前言 随着这些年前端技术的飞速发展,几年前的一些老项目在最新的环境下很可能会出现烂掉的情况。如果项目不需要升级,只需要把编译后的文件放在那里跑而不用管的话还好。但是,某一天产品跑过来给你讲要升级某一个功能,你不得不去…

Golang | 运用分布式搜索引擎实现视频搜索业务

把前面所设计好的搜索引擎引用进来开发一个简单的具体的视频搜索业务。代码结构: handler目录:后端接口,负责接收请求并返回结果,不存在具体的搜索逻辑。video_search目录:具体的搜索逻辑存放在这,包括reca…

硬件学习笔记--64 MCU的ARM核架构发展及特点

MCU(微控制器)的ARM核架构是当前嵌入式系统的主流选择,其基于ARM Cortex-M系列处理器内核,具有高性能、低功耗、丰富外设支持等特点。以下是ARM核MCU的主要架构及其发展: 1. ARM Cortex-M系列内核概览 ARM Cortex-M系…

【笔记】Windows 系统安装 Scoop 包管理工具

#工作记录 一、问题背景 在进行开源项目 Suna 部署过程中,执行设置向导时遭遇报错:❌ Supabase CLI is not installed. 根据资料检索,需通过 Windows 包管理工具Scoop安装 Supabase CLI。 初始尝试以管理员身份运行 PowerShell 安装 Scoop…

网络安全-等级保护(等保) 3-2-2 GB/T 28449-2019 第7章 现场测评活动/第8章 报告编制活动

################################################################################ GB/T 28449-2019《信息安全技术 网络安全等级保护测评过程指南》是规定了等级测评过程,是纵向的流程,包括:四个基本测评活动:测评准备活动、方案编制活…

软件测评中心如何确保软件品质?需求分析与测试计划很关键

软件测评中心承担着对软件进行评估、测试和审查的任务,它有一套规范的流程来确保软件的品质,并且能够向客户和开发者提供详实的软件状况分析报告。 需求分析环节 这一环节至关重要,必须与客户和开发团队保持密切交流。我们需要从他们那里精…

【C语言编译与链接】--翻译环境和运行环境,预处理,编译,汇编,链接

目录 一.翻译环境和运行环境 二.翻译环境 2.1--预处理(预编译) 2.2--编译 2.2.1--词法分析 2.2.2--语法分析 2.2.3--语义分析 2.3--汇编 2.4--链接 三.运行环境 🔥个人主页:草莓熊Lotso的个人主页 🎬作者简介:C研发…

matlab实现VMD去噪、SVD去噪,源代码详解

为了更好的利用MATLAB自带的vmd、svd函数,本期作者将详细讲解一下MATLAB自带的这两个分解函数如何使用,以及如何画漂亮的模态分解图。 VMD函数用法详解 首先给出官方vmd函数的调用格式。 [imf,residual,info] vmd(x) 函数的输入: 这里的x是待…

深入理解复数加法与乘法:MATLAB演示

在学习复数的过程中,复数加法与乘法是两个非常基础且重要的概念。复数的加法和乘法操作与我们常见的实数运算有所不同,它们不仅涉及到数值的大小,还有方向和相位的变化。在这篇博客中,我们将通过MATLAB演示来帮助大家更好地理解复…

html+css+js趣味小游戏~Treasure Arena多人竞技(附源码)

下面是一个简单的记忆卡片配对游戏的完整代码&#xff0c;使用HTML、CSS和JavaScript实现&#xff1a; html <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"wid…

Linux之文件进程间通信信号

Linux之文件&进程间通信&信号 文件文件描述符文件操作重定向缓冲区一切皆文件的理解文件系统磁盘物理结构&块文件系统结构 软硬链接 进程间通信匿名管道命名管道system V共享内存 信号 文件 首先&#xff0c;Linux下一切皆文件。对于大量的文件&#xff0c;自然要…

笔试强训:Day6

一、小红的口罩&#xff08;贪心优先级队列&#xff09; 登录—专业IT笔试面试备考平台_牛客网 #include<iostream> #include<queue> #include<vector> using namespace std; int n,k; int main(){//用一个小根堆 每次使用不舒适度最小的cin>>n>&…

国密SSL证书和国产SSL证书有什么区别

国密SSL证书和国产SSL证书在定义、算法标准、安全性能、兼容性、应用场景及自主可控性等方面存在显著区别&#xff0c;具体分析如下&#xff1a; 定义与背景 国密SSL证书 采用中国自主研发的密码算法&#xff08;如SM2、SM3、SM4&#xff09;&#xff0c;符合国家密码管理局发…

OramaCore 是您 AI 项目、答案引擎、副驾驶和搜索所需的 AI 运行时。它包括一个成熟的全文搜索引擎、矢量数据库、LLM界面和更多实用程序

一、软件介绍 文末提供程序和源码下载 OramaCore 是您的项目、答案引擎、副驾驶和搜索所需的 AI 运行时。 它包括一个成熟的全文搜索引擎、矢量数据库、LLM具有行动计划和推理功能的接口、用于根据数据编写和运行您自己的自定义代理的 JavaScript 运行时&#xff0c;以及更多…

实验设计与分析(第6版,Montgomery)第5章析因设计引导5.7节思考题5.14 R语言解题

本文是实验设计与分析&#xff08;第6版&#xff0c;Montgomery著&#xff0c;傅珏生译) 第5章析因设计引导5.7节思考题5.14 R语言解题。主要涉及方差分析&#xff0c;正态假设检验&#xff0c;残差分析&#xff0c;交互作用图。 dataframe<-data.frame( strengthc(9.60,9.…

Maven---配置本地仓库

目录 5. 5.1在Maven路径下新建文件夹用于本地仓库存储 5.2 复制本地仓库路径 5.3 找到配置文件路径&#xff0c;使用VSCode方式打开 5.4 新增一行代码 5.5 复制本地仓库路径&#xff0c;设置存储路径 5.1在Maven路径下新建文件夹用于本地仓库存储 5.2 复制本地仓库路径 5…

Docker环境构建:MySQL 双主四从集群

Java系列文章 文章目录 Java系列文章前言一、环境准备与Docker配置1.1 环境配置1.2 目录结构1.3 读写分离1.3.1 读写分离方案1.3.2 自定义Docker网络 二、双主四从节点配置2.1 创建MySQL_1节点2.1.1 Mysql_1容器2.1.2 Navicat创建连接2.1.3 创建配置账户 2.2 创建MySQL_2节点2.…

低频 500kHz vs 高频 1MHz,FP6291C与FP6291升压芯片应用在不同场景该怎么选择?

FP6291C 与 FP6291 均为电流模式升压型 DC-DC 转换器&#xff0c;内置功率 MOSFET 和内部补偿网络。这一特性极大简化了外部电路设计&#xff0c;不仅降低了 PCB 空间占用&#xff0c;还能有效控制成本。两者均支持软启动功能&#xff0c;可显著减少浪涌电流&#xff0c;提升系…

leetcode题解513:找树左下角的值(递归中的回溯处理)!

一、题目内容&#xff1a; 题目要求找到一个二叉树的最底层最左边节点的值。具体来说&#xff0c;我们需要从根节点开始遍历二叉 树&#xff0c;找到最深的那层中的最左边的节点&#xff0c;并返回该节点的值。因为要先找到最底层左侧的值&#xff0c;所以我们选择遍历顺序一定…